[.ab3

ROS2 Node

Content ROS2 Topic

ROS2 Service

Reading the official doc is highly recommended!

#A ROS 2 Documentation: Humble

B Tutorials

B Beginner: CLI tools

Configuring environment

Using turtlesim rosz, and rqt
Understanding nodes
Understanding topics
Understanding services
Understanding parameters
Understanding actions

Using rqt_consele to view logs
Launching nodes

Recording and playing back data

/ Tutorials / Beginner: CLI tools) Edit on GitHub

You're reading the documentation for an older, but
still supported, version of ROS 2. For information on
the latest version, please have a look at Jazzy.

Beginner: CLI tools

= Configuring environment

. Using turtlesim |, ros2 ,and rqt
« Understanding nodes

= Understanding topics

« Understanding services

« Understanding parameters

= Understanding actions

» Using | rqt_console to view logs
= Launching nodes

+ Recording and playing back data

Q@ Previous Next ©

© Copyright 2024, Open Robotics.

Built with Sphinx using a theme provided by Read the
Docs.

#A ROS 2 Documentation: Humble

Distributions

B Tutorials

& Beginner: CLI tools

B Beginner: Client libraries
Using colcen to build packages
Creating a workspace
Creating a package

Writing a simple publisher and
subscriber (C++)

Writing a simple publisher and
subscriber (Python)

Writing a simple service and client
(C++)

Wiriting a simple service and client

(Python)
Creating custom msg and srv files

optional

Using parameters in a class (C++)
Using parameters in a class (Python)

Using raszdoctor to identify issues

\ Creating and using plugins (C++)

Implementing custom interfaces \

)

#®& Tutorials /' Beginner: Client libraries
€ Edit on GitHub

You're reading the documentation for an older, but
still supported, version of ROS 2. For information on
the latest version, please have a look at Jazzy.

Beginner: Client libraries

« Using | colcen | to build packages

« Creating a workspace

« Creating a package

« Writing a simple publisher and subscriber (C++)
« Writing a simple publisher and subscriber (Python)
« Writing a simple service and client (C++)

« Writing a simple service and client (Python)

« Creating custom msg and srv files

» |Implementing custom interfaces

» Using parameters in a class (C++)

« Using parameters in a class (Python)

« Using ros2doctor to identify issues

« Creating and using plugins (C++)

& Previous Next ©

© Copyright 2024, Open Robotics.

Built with Sphinx using a theme provided by Read the
Docs.

: L”ihk‘; a ##&£ g ‘ a.,s‘witf) DEEEW_?_F:_?' EE ﬁlj%;‘ﬁ

NT OF ELECTRONIC AND ELECTRICAL ENGINEERIN

Node

Service NODE

Request Message
Publisher

Response

Subscriber

SN (N - i a0z
FRAN

\ @ 215'41!’4?55&% i\ B ElETLﬁElE_LITFE-I'

5%/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY . ‘7/ DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Node

Create first node (C++)

$ cd ~/ros2 ws/src/
$ ros2 pkg create ¢ pkg --node-name listener --dependencies rclcpp std msgs -
-build-type ament cmake

Open ~ || [/ 4f”t$??EFFEF1 =

1 #include

CMakelLists. txt -
3int main(int argc, char ** argv)

(55 4

T 5 (void) argc;

package.xml 6 (void) argv;
-

L litsener.cpp 8 printf("hello world c_pkg package\n");
9 return
10 |

3 directories, 3 files

PSS TRE

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

(2) Az Mty

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Node

open ~ || [*CMakeLists.txt

~fros2_ws/src/c_pka

1 cmake_minimum_required(VERSION 3.8)

2 project(c_pkg)

3

4 1f(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")

5 add_compile_options(-Wall -Wextra -Wpedantic)

6 endif()

7

8 # find dependencies

9 find_package(ament_cmake REQUIRED)

10 find package(rclcpp REQUIRED)

11 find package(std msgs REQUIRED)

12

13 add_executable(litsener src/litsener.cpp)

14 target include directories(litsener PUBLIC

15 $<BUILD INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>

16 S<INSTALL_INTERFACE:includes)

17 target_compile_features(litsener PUBLIC c_std 99 cxx_std_17) # Require €99 and C+
+17

18 ament_target dependencies(

19 litsener

Save = — O X

20 "rclcpp”
21 'std msgs"
22)

23

24 install(TARGETS litsener

25 DESTINATION lib/${PROJECT_NAME})

26

27 1f(BUILD_TESTING)

28 find package(ament_1lint _auto REQUIRED)

29 # the following line skips the linter which checks for copyrights
38 # comment the line when a copyright and license is added to all source files
31 set(ament_cmake_copyright_FOUND TRUE)

32 # the following line skips cpplint (only works in a git repo)

33 # comment the 1line when this package is in a git repo and when

34 # a copyright and license is added to all source files

35 set(ament_cmake_cpplint_FOUND TRUE)

36 ament_lint_auto find test dependencies()

37 endif()

package.xml

Open ~ || [+ ~{ros2_wsfsrc/c_pkg

1 <?xml version="1.0"7>

2 <?xml-model href="http://download.ros.org/schema/package format3.xsd"
schematypens="http://www.w3.0rg/2001/XMLSchema"?>

3 <package format="3"=>

4 <name>c_pkg</name>

5 =<version=0.0.0</version=

6 <description>TODO: Package description</description=

7 <maintainer emall="pi@todo.todo"=pi</maintainer=

8 <license>TODO: License declaration</license>

18 <buildtool depend=ament cmake</buildtool depend>

12 <depend>rclcpp</depend=
13 <depend>std msgs</depend=>

15 <test depend=ament_lint auto</test depend=
16 <test_depend=ament_lint_common</test depend>

17
18 <export>
19 <build type>ament_cmake</build types>

20 <jfexport=
21 /package!

(2 At | (2 RISEAIRE

$ cd ~/ros2 ws/src/c pkg/src/
$ touch talker.cpp

CMakelLists.txt

Open ~ 1 ~fros2_ws/src/c_pkg

1 cmake_minimum_required(VERSION 3.8)
2 project(c_pkg)
3
4 1f(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "clang")
5 add_compile_options(-Wall -Wextra -Wpedantic)
6 endif()
7
8 # find dependencies
9 find_package(ament_cmake REQUIRED)
8 find package(rclcpp REQUIRED)
1 find_package(std_msgs REQUIRED)
2
3 add_executable(listener src/listener.cpp)
4 add_executable(talker src/talker.cpp)
5 target_include_directories(listener PUBLIC
6 S$<BUILD INTERFACE:S{CMAKE_CURRENT_SOURCE_DIR}/include>
7 S<INSTALL_INTERFACE:include>)
8 target_include_directories(talker PUBLIC
9 S<BUILD_INTERFACE:S{CMAKE_CURRENT_SOURCE_DIR}/include>
® S<INSTALL_INTERFACE:include>)
1 target compile features(listener PUBLIC c std 99 cxx std 17) # Require €99 and C++17
2 ament_target_dependencies(
3 listener
rclecpp
std_msgs
)
ament_target_dependencies(
talker
rclcpp
std_msgs
)
install(TARGETS listener
DESTINATION 1ib/${PROJECT_NAME})
4 install(TARGETS talker
5 DESTINATION lib/S{PROJECT_NAME})
6
7
8 1f(BUILD TESTING)

" Eimd mmclicanf amant Tiat ~ndba AFALITAFERY 7

4
5
6
7
8
=)
<]
1
2
3

/s r‘,\. /, N - J—)[:‘E
(& AIMBAE | (B ETSETIRE
¥ \“‘ o/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY . ‘k/‘ DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Node

Create first node (Python)

$ cd ~/ros2 ws/src/
$ ros2 pkg create py pkg --node-name talker --dependencies rclpy std msgs --
build-type ament python

package.xml open - M. N .tﬂk?npgﬂr -
init .py :
t:: talker.n 1 def main():
talker.py 2 print('Hi from py pkg.')
3
— py_pkg 4

setup.cfg
setup.py

5if name ==
6 main()

test copyright.py
test flakes.py

test pep257.py

3 directories, 9 files

CEEZTYY:

) TS IEE

& / DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

. T %/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY ‘
| LS

setup.py
Open ~ [+1 ~fros2_ws/src/py_pkg -

1|from setuptools import find packages, setup

2

3 package name = 'py pkag'

4

5 setup(

6 name=package name,

7 version='0.0.0"'

] packages=find packages(exclude=[te=t']),
9 data files=[

10 ('sharefament index/resource index/packages’',
11 ['resource/' + package name]),

12 ('share/' + package name, ['package.xml']),
13 1,

14 install requires=['setuptools'],

15 zip safe=True,

16 maintainer='pi’,

17 maintainer_email='pi@todo.todo’,

18 description='TODO: Package description’,
19 license='TODO: License declaration',

20 tests require=['pytest’'],

21 entry points={

22 'console scripts’': [

23 'talker = py_pkg.talker:main'

24 1,

23 1,

26)

CAEEZ EEL:

¥ ﬂ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
L

A P
| (@) e15%518s

2 / DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Node

$ cd ~/ros2 ws/src/py pkg/py pkg/
$ touch listener.py

’ 2|
setu =
Open ~ || [+ froes et sFrLc?;,'_pkg Save = = O P
1 from setuptools import find packages, setup
2
3 package _name = 'py pkg'
4
5 setup(
6 name=package_name,
T version='0.08.0",
8 packages=find packages(exclude=[" 'test']),
9 data files=[
10 ('share/ament_index/resource index/packages’,
11 ['resource/' + package name]),
12 ('share/' + package_name, ['package.xml']),
13 1
14 install requires=['setuptools'],
15 zip safe=True,
16 maintailner="pi’,
17 maintailner_email='pi@todo.todo’,
18 description='TODO: Package description’,
19 license='TODO: License declaration’',
20 tests_require=['pytest'],
21 entry_points={
22 'console scripts': [
23 'talker = py pkg.talker:main',
24 "Llistener = py_pkg.listener:main’
25 1,
26 i
27) 10

& AINHLE

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

m) RFSERIEE

// DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING
1

Topic

NODE

Message

Publisher

Subscriber

11

Topic

() 2755188

// DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Topics don’t have to only be point-to-point communication; it
can be one-to-many, many-to-one, or many-to-many.

NODE

Message

Publisher

12

VA =N - ETaE

e)

CIEEZ 2L (@) ®F5e5I8%E

A5k SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY \& {/ DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEEFING
Lt STLES

Topic
P class Talker : public rclcpp::Node

. {
Create first publisher public:
Talker () : Node (“talker”), count (0)

(C++) {

publisher = this-—

#%nclude <chron9> >create publisher<std msgs::msg::String> ("topic”, 10);
#%nclude {functional> timer = this—>create wall timer (
#include <memory> 500ms, std::bind(&Talker::timer callback, this)):
#include <string» }
private:
#tinclude “rclepp/rclepp. hpp”
#include “std msgs/msg/string. hpp” void timer callback ()
using namespace std::chrono literals; { B
. o auto message = std msgs::msg::String();
int main(int arge, char * argvl]) message. data = “Hello, world! ” +
{ o std::to string(count ++);
rclepp::init(arge, argv); RCLCPP_INFO (this—>get logger(), “Publishing: "%s’”,
rclepp::spin(std: :make shared<Talker>()); message. data. ¢ str()):
rclepp: :shutdown () ; publisher —>publish(message) ;
return 0; }
} rclepp: :TimerBase: :SharedPtr timer ;
rclepp: :Publisher<std msgs::msg::String>::SharedPtr
publisher ;
size t count ; 13

}-

VA =N - ETaE

e)

CIEEZ 2L (@) ®F5e5I8%E

A5k SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY \& {/ DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEEFING
Lt STLES

Topic
Create first publisher (Python)

class Talker (Node) :

import rclpy def init (self):
from rclpy. node import Node super (). init ("Talker”)
from std msgs.msg import String self. publisher =
self. create publisher(String, “topic”, 10)

def main() : self.count = 0

rclpy. init (args=None) self. timer =

node = Talker () self.create timer (0.5, self. timer cbh)

rclpy. spin(node) def timer cb(self):

rclpy. shutdown () message = String()

message. data = “Hello,

if name == main : world!”+str (self. count)

main ()

self. get logger (). info("Publishing”+message. data)
self.publisher .publish(message)
self. count += 1

14

AN o) 7 ETIE
CIEEZ 2L (@) ®F5e5I8%E
5%/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY \E ‘7/ DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Topic

Create first subscriber o)
class Listener : public rclcpp::Node
(C++) {

public:
Listener() : Node("listener")
{
subscription = this->create subscription<std msgs::msg::String>(
"topic", 10, std::bind(&Listener::callback, this,

: . td::placeholders:: 1));
int main(int argc, char *argv[]) 5 d} placeholders::_1));

{

#include "rclcpp/relepp.hpp”
#include "std msgs/msg/string.hpp"

rclepp::init(arge, argv);

' ' Ivate:
rclepp::spin(std::make shared<Listener>()); private

void callback(const std msgs::msg::String::SharedPtr msg)

rclepp::shutdown(); {
return 0: RCLCPP_INFO(this->get logger(), "I heard: '%s'", msg-
! >data.c_str());
j

rclcpp::Subscription<std msgs::msg::String>::SharedPtr
subscription_;

55

VA =N - ETaE

e)

CIEEZ 2L (@) ®F5e5I8%E

A5k SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY \& {/ DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEEFING
Lt STLES

Topic

Create first publisher (Python)

class Talker (Node) :
def init (self):
super). init (“"Talker”)
self. publisher =
self. create publisher (String, “topic”, 10)
def main() : self. count = 0

rclpy. init (args=None) self. timer_ =
node = Talker () self. create timer (0.5, self. timer cb)

def timer cb(self):
message = String()
message. data = “Hello,
world!”+str (self. count)

import rclpy
from rclpy. node import Node
from std msgs.msg import String

rclpy. spin(node)
rclpy. shutdown ()

. b . b
if name == main

main ()
self. get logger (). info("Publishing:”+message. data)

self.publisher .publish(message)
self. count += 1

16

IGINEERING

TN PN

i 7 RO - = 20
(& AIMBAE | (5 eTHEIRE
S ,n‘& -):‘y' SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY A & ‘:/‘ DEPARTMENT OF ELECTRONIC AND ELECTRICAL EN

Topic

Create first Subcriber (Python)

import rclpy class Listener (Node) :
from rclpy. node import Node def init (self):

from std msgs.msg import String super). init (listener’)

self. subscriber =

def main () : §e1f.create_subscription(String,’topic’,self.subscr
iber cb, 10)

rclpy. init (args=None)
node = Listener ()
rclpy. spin (node) def subscriber cb(self, msg):

self. get logger (). info ("1 heard:”+msg. data)

. b .)
if name == main :
main ()

Topic

AN e = 1o lr=y
(& AIMBAE | (B ETSETIRE
¥ W %/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY ‘7" DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

:-5S ros2 topic --help
usage: ros2 topic [-h] [--include-hidden-topics]
Call ‘ros2 topic <command> -h"~ for more detailed usage.

Various topic related sub-commands

options:
-h, --help show this help message and exit
--include-hidden-topics
Consider hidden topics as well

Commands:
bw Display bandwidth used by topic
delay Display delay of topic from timestamp in header
echo Output messages from a topic
find Output a list of available topics of a given type
hz Print the average publishing rate to screen
info Print information about a topic
list Output a list of available topics
pub Publish a message to a topic
type Print a topic's type

Call ‘ros2 topic <command> -h" for more detailed usage.

& AINHLE

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

m) RFSERIEE

// DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Service

Request

Response

19

Service

0 A3 M LY

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

() 2755188

// DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

There can be many service clients using the same service. But
there can only be one service server for a service.

Service

Request

[

Response

20

IGINEERING

N (TR, -
/. \ 177 me) S A= o fir=y
(&) A3 MuLE | (5)eFS5E5IEE
\‘-‘}ilv"y/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY A& 4 / DEPARTMENT OF ELECTRONIC AND ELECTRICAL EN:

Service

Create service message

$ cd ~/ros2 ws/src

$ ros2 pkg create data_type --build-type ament cmake --dependencies
rosidl default generators

$ cd ~/ros2 ws/src/data_type/

$ mkdir srv
$ cd srv
$ touch AddTwolnt.srv
Open [+1
1int6e4 a
2 int64 b
3 it TR
4 int64 sum

21

Service

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

) A A

R B FSESINE

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

CMakelLisks.bxt

Open ~ &
P I+l ~fros2_ws/src/data bype

1kmake_minimum_required(UERSION 3.8)
2 project(data_type)
3
4 1f(CMAKE_COMPILER IS GNUCXX OR CMAKE CXX_COMPILER_ID MATCHES "Clang")
5 add compile options(-Wall -Wextra -Wpedantic)
6 endif()
T
8 # find dependencies
9 find package(ament_cmake REQUIRED)
10 find_package(rosidl_default_generators REQUIRED)
11 rosidl_generate_interfaces(S${PROJECT_NAME}
12 "srv/AddTwoInt.srv"
13)
14 ament_export_dependencies(rosidl_default_runtime)
15 if(BUILD TESTING)
16 find _package(ament lint auto REQUIRED)
17 # the following line skips the linter which checks for copyrights
18 # comment the 1line when a copyright and license is added to all source files
19 set(ament_cmake_copyright_FOUND TRUE)
20 # the following line skips cpplint (only works in a git repo)
21 # comment the line when this package is in a git repo and when
22 # a copyright and license is added to all source files
23 set(ament_cmake_cpplint_FOUND TRUE)
24 ament_lint _auto_ find test dependencies()
25 endif ()
26
27 ament_package()

22

(E) TS5 SIHE

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

o AIMnLE

Service

package.xml
Open ~ [+1 ~(ros2_ws/src/data_type el

1 <?xml version="1.0"7?>

2 <?xml-model href="http://download.ros.org/schema/package format3.xsd" schematypens="http://www.w3.0rg/2001/XMLSchema"?=>
3 <package format="3">

4 <=name>data_ type</name=

5 =version=0.0.0</version=

6 <description=TODO: Package description</description=

7 =maintainer emaill="pi@todo.todo"=pi</maintainers=

8 <license>TODO: License declaration</license>

9

18 <buildtool depend=ament cmake</buildtool depend=
12 <depend>rosidl_default_generators</depend>

14 <test depend=ament_lint auto</test depend=

15 <test_depend=ament_lint_common</test_depend=

16 <member_ of group>rosidl_interface_packages</member of group=>
17 <export=

18 <build_type=>ament_cmake</build_type>

19 </export=>

20 | /package’

23

¢ F 5L IEE

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

(& AIMiLE |
d;ﬁy SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

[i
a Service

~ 5
{) cal / lib / python3.10 / dis... es / data_type / srv | Q = (v = N &) ix [data_type / include / data_type / data_type / srv | Q = |~ 0 = = 0 fx
{0 Recent a c a . O Recent h e .
* Starred _add_two_ _add_two_ _init_.py = _ pycache_ * Starred add_two_ add_two_ detail
int.py int_s.c o2 int.h int.hpp
(st Home {3t Home
[2 Documents [Documents
¢ Downloads ¢ Downloads
I1 Music I1 Music
&7 Pictures (& Pictures
H Videos H Videos
s, Trash i, Trash
(m] Floppy Disk (m Floppy Disk

+ Other Locations + Other Locations

24

=2 ,
N

¢ F 5L IEE

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

. ()22 nntt | (
3| Service
Create server (C++)

$ cd ~/ros2 ws/src/c_pkg/src/
$ touch srv_server.cpp

CMakelLists.txt

Open ~ M ~fras2_ws/srcfc_pkg
— T L

16 find_package(rclcpp REQUIRED)

11 find_package(std_msgs REQUIRED)

12 find_package(data_type REQUIRED)

13

14 add executable(listener src/listener.cpp)

15 add_executable(talker src/talker.cpp)

16 add_executable(srv_server src/srv_server.cpp)

1T

18

19 target_include_directories(listener PUBLIC

28 $<BUILD_INTERFACE:S${CMAKE_CURRENT_SOURCE_DIR}/include>

21 S$<INSTALL_INTERFACE:include=)

22 target_include_directories(talker PUBLIC

23 $<BUILD_INTERFACE:S${CMAKE_CURRENT_SOURCE_DIR}/include>

24 S<INSTALL_INTERFACE:includes)

25

26 target compile features(listener PUBLIC c std 99 cxx std 17) # Require €99 and C++17

27 ament_target_dependencies(

28 listener

29 rclcpp

30 std_msgs

31)

32 ament_target_dependencies(
33 talker

34 rclcpp

35 std_msgs

36)

37 ament_target dependencies(srv_server rclcpp data type)
38 install(TARGETS listener

39 DESTINATION lib/S{PROJECT_NAME})

40 install(TARGETS talker

41 DESTINATION lib/S{PROJECT_NAME})

42 install1(TARGETS

43 srv_server

44 DESTINATION lib/S${PROJECT_NAME]})

25

RN e N
N8\ (7 T) iy = 20 =
& A MiAE | (5 EF5EITIEE
; ‘)"';/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY A " ‘:// DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Service

#include “rclepp/relepp. hpp”
#tinclude “data type/srv/add two int. hpp”

#include <memory>

int main(int argc, char **argv)
{

rclepp::init(arge, argv):

std: :shared ptr<rclcpp::Node> node =
rclepp: :Node: :make shared(”“add two ints server”);
RCLCPP_INFO(rclcpp::get logger (“rclepp”), “Ready
to add two ints.”):
rclepp::spin(std: :make shared<{SrvServer>());

rclepp: :shutdown () ;

J

26

IGINEERING

(& AIMaLE | (5 BT5ENTEE
\:7 ,‘(‘“’: 4%/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY A ‘;/ DEPARTMENT OF ELECTRONIC AND ELECTRICAL EN

Service

class SrvServer : public rclcpp::Node
{
public :
SrvServer () : Node(”srv _server”)
{
service = this—>create service{data type::srv::AddTwoInt>(“add two int”,
std: :bind (&SrvServer::add, this, std::placeholders:: 1, std::placeholders:: 2)):

}
private:
void add(const std::shared ptr<data type::srv::AddTwolnt: :Request> request,
std: :shared ptr<data type::srv::AddTwolnt: :Response> response)
{
response—,sum = request—>a + request—>b;
RCLCPP INFO (this—>get logger (), “Incoming request\na: %1d” 7 b: %1d”,
request—>a, request—>b):
RCLCPP INFO (this—>get logger (), ”“sending back response: [%1d]”, (long int)response—>sum)
}

rclepp::Service <data type::srv::AddTwolnt>::SharedPtr service;

LY.

‘a‘ o ﬂ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
i

T SESIEE

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Service

Create server (Python)

$ cd ~/ros2 ws/src/py pkg/py pkg/
$ touch srv_server.py

Open ~ [+
1 from setuptools import find packages, setup
2
3 package name = 'py pkg'
4
5 setup
6 name=package name,
7 version="0.0.0",
8 packages=find packages(exclude=['te=t']),
9 data files=[
ie ('share/ament index/resource index/packages',
11 ['resource/' + package name]),
12 ('share/' + package name, ['package.xml']),
13 1,
14 install_requires=['setuptools'],
15 zip_safe=True,
16 maintainer='pi’',
17 maintainer_email='pi@todo.todo’,
18 description='TODO: Package description’,
19 license='TODO: License declaration',
20 tests require=['pytest'],
21 entry_points={
22 'console _scripts': [
23 'talker = py_pkg.talker:main',
24 '"Listener = py pkg.listener:main',
25 'srv_server = py _pkg.srv _server:main',
26 1,
27 .

28 |

~fros2_ws/src/py_phkog

28

IGINEERING

VA =N - ETaE
(& A3 ML (@) TSR TiER
N B/ SOUTHERN UNERSITY OF SCIENCE AND TECHNOLOGY \& {[/ DEPARTMENT OF ELECTRONKC AND ELECTRCAL EX

Service

import rclpy
from rclpy. node import Node
from data type.srv import AddTwolnt

def main() :
rclpy. init (args=None)
node = SrvServer ()
rclpy. spin(node)
rclpy. shutdown ()

.) . b
if name == main
main ()

class SrvServer (Node) :
def init (self):
super). init (“srv_server”)
self. service
=self. create service(AddTwoInt, add two int’, self.add)
def add(self, request, response) :
response. sum = request. atrequest.b
self.get logger (). info(f”Incoming
requst: {request. a} "+f”: {request. b}”)
self.get logger (). info(f”sending back
response: {response. sum}”)
return response

29

N P .
(& A (¢ 7RO e = 0z
(& A MuAE | (5 T5EATRE
\{7_‘.’4 l)‘}y’ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY / DEPARTMENT OF ELECTRONIC AND ELECTRICAL EN:

Service

Create client (C++)

$ cd ~/ros2 ws/src/c_pkg/src
$ touch srv_client.cpp

#include “rclcpp/rclepp. hpp”

#include “data type/srv/add two int. hpp”
#include <chrono>

#include <cstdlib>

#include <memory>

using namespace std::chrono literals;

int main(int argec, char **argv)
{
rclepp: :init(arge, argv):
auto node = std::make shared<SrvClient>():
node—>send request () ;
rclepp: :shutdown () ;
return O;

\/c V ; \‘ ‘ ‘r E[a DzlmarmsmDrELEcmuLcANDELEUTUL:::_:EE:J«;
i?Wf v SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY Nan &/ i

class SrvClient : rclcpp::Node

{
public:
SrvClient () :Node ("srv _client”)
{

)

void send request ()
{
auto request =
request—>a = 2;
request—>b = 3;
auto result future = client —>async send request (request) ;
if (rclepp::spin until future complete(this—>get node base interface(), result future) ==
rclepp: :FutureReturnCode: : SUCCESS)

client = this—>create client<data type::srv::AddTwolnt>(“add two int”);

std: :make shared<data type::srv::AddTwolnt: :Request> () ;

{
RCLCPP_INFO (this—>get logger(), “Result: %1d”, result future.get()—>sum);
}
else
{
RCLCPP_ERROR (this—>get logger (), “Failed to call service”);
}

J

rclepp::Client<data type::srv::AddTwolnt>::SharedPtr client ;
b 31

(&) AsMn4% | (2)e75%5I8F

\g; g / SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY \\ l. / DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING
4 TR
3 S 1 — —

CMakelLists.txt

bt
Open [+1 ~fros2_wsfsrcfc_pkg

Save = = [m} ®

11 TUN0_pacKage|STa_Mms5gs KEQULIRED)

12 find_package(data_type REQUIRED)

13

14 add_executable(listener srcflistener.cpp)

15 add_executable(talker srcftalker.cpp)

16 add _executable(srv_server srcj/srv_server.cpp)

17 add_executable(srv_client src/srv_client.cpp)

18

19 target_include_directories(listener PUBLIC

20 $<BUILD_ INTERFACE:S${CMAKE_CURRENT_SOURCE_DIR}/include>
21 S<INSTALL_INTERFACE:includes)

22 target_include directories(talker PUBLIC

23 $<BUILD INTERFACE:S{CMAKE_CURRENT_SOURCE_DIR}/include>
24 S$<INSTALL INTERFACE:include=)

25

26 target_compile_features(listener PUBLIC c_std 99 cxx_std_17) # Require (99 and C++17
27 ament_target_dependencies(

28 listener

29 rclcpp

38 std _msgs

31)

32 ament_target_dependencies(
33 talker

34 rclcpp

35 std_msgs

36)

37 ament_target_dependencies(srv_server rclcpp data_type)
38 ament_target dependencies(srv_client rclcpp data type)
39 install(TARGETS listener

49 DESTINATION lib/S${PROJECT_NAME})

41 install(TARGETS talker

42 DESTINATION lib/S${PROJECT_NAME})

43 install(TARGETS

44 srv_server

45 DESTINATION 1ib/S{PROJECT_NAME})

46 install(TARGETS

47 srv_client

48 DESTINATION 1ib/S{PROJECT_NAME})

49

32

Service

LY.

‘;- o ﬂ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
i

%

¢ F 5L IEE

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Create client (Python)

$ cd ~/ros2 ws/src/py pkg/py pkg
$ touch srv_client.py

| from setuptools import find packages, setup
»

} package_name = 'py_pkg'
}

i setup

i name=package_name,

version='0.6.0"',
packages=find packages(exclude=['test']),
data files=[

['resource/' + package name]),
('share/' + package_name, ['package.xml']),
1,
install_requires=['setuptocls'],
zip_safe=True,
maintainer="pi’',
maintainer_email='pi@todo. todo',
description='TODO: Package description',
license='TODO: License declaration’,
tests require=['pytest'],
entry points={
'console_scripts': [
"talker = py_pkg.talker:main’',
"listener = py pkg.listener:main',
'srv_server
'srv_client

py_pkg.srv_server:main',

py_pkg.srv_client:main',

T

1
1,

W WA W w1 W R M W G W WA M Wl Wl EE W W P R e e W

('share/ament_index/resource_index/packages',

33

IGINEERING

(7 D) TSN a7 ETiE
(.4 ai-#‘ii’&% UL E@) B SEIIER
\# :“" 4%/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY \& {/ DEPARTMENT OF ELECTRONIC AND ELECTRCAL BN

Service
class SrvClient (Node) :
def init (self):
import rclpy super (). _init_ (“srv_client”)
from rclpy. node import Node self.client = self.create client (AddTwoInt, “add two int”)
while not self.client .wait for service(timeout sec=1.0) :

f data type. 1 t AddTwolnt , . . L
rom data_type. sty 1mpor voin self. get logger().info(service not available, waiting

again...)
self.req = AddTwoInt. Request ()
def main(args=None) : def send request (self) :
rclpy. init (args=args) self.req.a = 41
self.req.b =1
client = SrvClient () self. future = self.client_.call _async(self.req)
client. send request () self. future. add done callback(self. callback)

: . def callback(self, future):
rclpy. spin(client)

try:
response = future. result ()
Client-deStTOY_HOde() except Exception as e:
rclpy. shutdown () self. get logger().info(Service call failed %r % (e,))
else:
if name == main : self. get logger (). info(
main () "Result of add two ints: for %d + %d = %d %

(self.req.a, self.req.b, response.sum))

34

" /4..,,. ﬂ

