
Lab3

1

ROS2 Node1

2 ROS2 Topic

2

3 ROS2 Service

optional

Reading the official doc is highly recommended!

Node1

4

Node1

5

Create first node (C++)

$ cd ~/ros2_ws/src/
$ ros2 pkg create c_pkg --node-name listener --dependencies rclcpp std_msgs -
-build-type ament_cmake

Node1

6

Node1

7

$ cd ~/ros2_ws/src/c_pkg/src/
$ touch talker.cpp

Node1

8

Create first node (Python)

$ cd ~/ros2_ws/src/
$ ros2 pkg create py_pkg --node-name talker --dependencies rclpy std_msgs --
build-type ament_python

Node1

9

Node1

10

$ cd ~/ros2_ws/src/py_pkg/py_pkg/
$ touch listener.py

Topic2

11

Topic2

12

Topic2

13

Create first publisher
(C++)

#include <chrono>
#include <functional>
#include <memory>
#include <string>

#include "rclcpp/rclcpp.hpp"
#include "std_msgs/msg/string.hpp"
using namespace std::chrono_literals;

int main(int argc, char * argv[])
{
 rclcpp::init(argc, argv);
 rclcpp::spin(std::make_shared<Talker>());
 rclcpp::shutdown();
 return 0;
}

class Talker : public rclcpp::Node
{
 public:
 Talker(): Node("talker"), count_(0)
 {
 publisher_ = this-
>create_publisher<std_msgs::msg::String>("topic", 10);
 timer_ = this->create_wall_timer(
 500ms, std::bind(&Talker::timer_callback, this));
 }
 private:

 void timer_callback()
 {
 auto message = std_msgs::msg::String();
 message.data = "Hello, world! " +
std::to_string(count_++);
 RCLCPP_INFO(this->get_logger(), "Publishing: '%s'",
message.data.c_str());
 publisher_->publish(message);
 }
 rclcpp::TimerBase::SharedPtr timer_;
 rclcpp::Publisher<std_msgs::msg::String>::SharedPtr
publisher_;
 size_t count_;
};

Topic2

14

Create first publisher (Python)

import rclpy
from rclpy.node import Node
from std_msgs.msg import String

def main():
 rclpy.init(args=None)
 node = Talker()
 rclpy.spin(node)
 rclpy.shutdown()

if __name__ == '__main__':
 main()

class Talker(Node):
 def __init__(self):
 super().__init__("Talker")
 self.publisher_ =
self.create_publisher(String,"topic",10)
 self.count = 0
 self.timer_ =
self.create_timer(0.5,self.timer_cb)
 def timer_cb(self):
 message = String()
 message.data = "Hello,
world!"+str(self.count)

self.get_logger().info("Publishing"+message.data)
 self.publisher_.publish(message)
 self.count += 1

Topic2

15

Create first subscriber
(C++)
#include "rclcpp/rclcpp.hpp"
#include "std_msgs/msg/string.hpp"

int main(int argc, char *argv[])
{
 rclcpp::init(argc, argv);
 rclcpp::spin(std::make_shared<Listener>());
 rclcpp::shutdown();
 return 0;
}

class Listener : public rclcpp::Node
{
public:
 Listener() : Node("listener")
 {
 subscription_ = this->create_subscription<std_msgs::msg::String>(
 "topic", 10, std::bind(&Listener::callback, this,
std::placeholders::_1));
 }

private:
 void callback(const std_msgs::msg::String::SharedPtr msg)
 {
 RCLCPP_INFO(this->get_logger(), "I heard: '%s'", msg-
>data.c_str());
 }

 rclcpp::Subscription<std_msgs::msg::String>::SharedPtr
subscription_;
};

Topic2

16

Create first publisher (Python)

import rclpy
from rclpy.node import Node
from std_msgs.msg import String

def main():
 rclpy.init(args=None)
 node = Talker()
 rclpy.spin(node)
 rclpy.shutdown()

if __name__ == '__main__':
 main()

class Talker(Node):
 def __init__(self):
 super().__init__("Talker")
 self.publisher_ =
self.create_publisher(String,"topic",10)
 self.count = 0
 self.timer_ =
self.create_timer(0.5,self.timer_cb)
 def timer_cb(self):
 message = String()
 message.data = "Hello,
world!"+str(self.count)

self.get_logger().info("Publishing:"+message.data)
 self.publisher_.publish(message)
 self.count += 1

Topic2

17

Create first Subcriber (Python)

import rclpy
from rclpy.node import Node
from std_msgs.msg import String

def main():
 rclpy.init(args=None)
 node = Listener()
 rclpy.spin(node)

if __name__ == '__main__':
 main()

class Listener(Node):
 def __init__(self):
 super().__init__('listener')
 self.subscriber_ =
self.create_subscription(String,'topic',self.subscr
iber_cb,10)

 def subscriber_cb(self,msg):
 self.get_logger().info("I heard:"+msg.data)

Topic2

18

Service3

19

Service3

20

Service3

21

$ cd ~/ros2_ws/src
$ ros2 pkg create data_type --build-type ament_cmake --dependencies
rosidl_default_generators
$ cd ~/ros2_ws/src/data_type/
$ mkdir srv
$ cd srv
$ touch AddTwoInt.srv

Create service message

Service3

22

Service3

23

Service3

24

Service3

25

Create server (C++)

$ cd ~/ros2_ws/src/c_pkg/src/
$ touch srv_server.cpp

Service3

26

#include "rclcpp/rclcpp.hpp"
#include "data_type/srv/add_two_int.hpp"

#include <memory>

int main(int argc, char **argv)
{
 rclcpp::init(argc, argv);

 std::shared_ptr<rclcpp::Node> node =
rclcpp::Node::make_shared("add_two_ints_server");
 RCLCPP_INFO(rclcpp::get_logger("rclcpp"), "Ready
to add two ints.");
 rclcpp::spin(std::make_shared<SrvServer>());

 rclcpp::shutdown();
}

Service3

27

class SrvServer : public rclcpp::Node
{
 public :
 SrvServer() : Node("srv_server")
 {
 service = this->create_service<data_type::srv::AddTwoInt>("add_two_int",
std::bind(&SrvServer::add, this, std::placeholders::_1, std::placeholders::_2));
 }
 private:
 void add(const std::shared_ptr<data_type::srv::AddTwoInt::Request> request,
 std::shared_ptr<data_type::srv::AddTwoInt::Response> response)
 {
 response->sum = request->a + request->b;
 RCLCPP_INFO(this->get_logger(), "Incoming request\na: %ld" " b: %ld",
 request->a, request->b);
 RCLCPP_INFO(this->get_logger(), "sending back response: [%ld]", (long int)response->sum);
 }

 rclcpp::Service <data_type::srv::AddTwoInt>::SharedPtr service;
};

Service3

28

Create server (Python)
$ cd ~/ros2_ws/src/py_pkg/py_pkg/
$ touch srv_server.py

Service3

29

import rclpy
from rclpy.node import Node
from data_type.srv import AddTwoInt

def main():
 rclpy.init(args=None)
 node = SrvServer()
 rclpy.spin(node)
 rclpy.shutdown()

if __name__ == '__main__':
 main()

class SrvServer(Node):
 def __init__(self):
 super().__init__("srv_server")
 self.service_
=self.create_service(AddTwoInt,'add_two_int',self.add)
 def add(self,request,response):
 response.sum = request.a+request.b
 self.get_logger().info(f"Incoming
requst:{request.a}"+f":{request.b}")
 self.get_logger().info(f"sending back
response:{response.sum}")
 return response

Service3

30

#include "rclcpp/rclcpp.hpp"
#include "data_type/srv/add_two_int.hpp"
#include <chrono>
#include <cstdlib>
#include <memory>
using namespace std::chrono_literals;

int main(int argc, char **argv)
{
 rclcpp::init(argc, argv);
 auto node = std::make_shared<SrvClient>();
 node->send_request();
 rclcpp::shutdown();
 return 0;
}

Create client (C++)
$ cd ~/ros2_ws/src/c_pkg/src
$ touch srv_client.cpp

Service3

31

class SrvClient : rclcpp::Node
{
 public:
 SrvClient():Node("srv_client")
 {
 client_ = this->create_client<data_type::srv::AddTwoInt>("add_two_int");
 }
 void send_request()
 {
 auto request = std::make_shared<data_type::srv::AddTwoInt::Request>();
 request->a = 2;
 request->b = 3;
auto result_future = client_->async_send_request(request);
if (rclcpp::spin_until_future_complete(this->get_node_base_interface(), result_future) ==
 rclcpp::FutureReturnCode::SUCCESS)
 {
 RCLCPP_INFO(this->get_logger(), "Result: %ld", result_future.get()->sum);
 }
 else
 {
 RCLCPP_ERROR(this->get_logger(), "Failed to call service");
 }
 }
 rclcpp::Client<data_type::srv::AddTwoInt>::SharedPtr client_;
} ;

Service3

32

Service3

33

Create client (Python)
$ cd ~/ros2_ws/src/py_pkg/py_pkg
$ touch srv_client.py

Service3

34

import rclpy
from rclpy.node import Node
from data_type.srv import AddTwoInt

def main(args=None):
 rclpy.init(args=args)

 client = SrvClient()
 client.send_request()

 rclpy.spin(client)

 client.destroy_node()
 rclpy.shutdown()

if __name__ == '__main__':
 main()

class SrvClient(Node):
 def __init__(self):
 super().__init__("srv_client")
 self.client_ = self.create_client(AddTwoInt,"add_two_int")
 while not self.client_.wait_for_service(timeout_sec=1.0):
 self.get_logger().info('service not available, waiting
again...')
 self.req = AddTwoInt.Request()
 def send_request(self):
 self.req.a = 41
 self.req.b = 1
 self.future = self.client_.call_async(self.req)
 self.future.add_done_callback(self.callback)

 def callback(self, future):
 try:
 response = future.result()
 except Exception as e:
 self.get_logger().info('Service call failed %r' % (e,))
 else:
 self.get_logger().info(
 'Result of add_two_ints: for %d + %d = %d' %
 (self.req.a, self.req.b, response.sum))

35

