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Indirect Connection between Two Variables

Three (Four) Cases
Indirect causal/evidential effect
Common cause
Common effect

https://cg.csc.lic.ac.uk/ xiaowei/.
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Example: Common Cause
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Example: Common Effect
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Example: Common Effect - 1
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Example: Common Effect - 2
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Example: Common Effect - 3
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Summary

Causal trail: X→ Z→ Y : active iff Z not observed

Evidential Trail: X← Z← Y : active iff Z is not observed

Common Cause: X← Z→ Y : active iff Z is not observed

Common Effect: X→ Z← Y : active iff either Z or one of its
descendants is observed

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Dec 2024 12 / 33
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First-order Markov Chain
Joint distribution for a sequence of observations:

p(x1, ..., xN) =
N∏

n=1
p(xn|x1, ..., xn−1).

Each of the conditional distributions is independent of all previous
observations except the most recent, we get first order Markov chain:

p(x1, ..., xN) = p(x1)
N∏

n=2
p(xn|xn−1).

So the conditional distribution for observation xn, given all of the
observations up to time n:

p(xn|x1, ..., xn−1) = p(xn|xn−1).

Pattern Recognition and Machine Learning.
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Second-order Markov Chain

For many sequential observations, we anticipate that the trends in the
data over several successive observations will provide important
information in predicting the next value.
If we allow the predictions to depend also on the previous-but-one
value, we obtain a second-order Markov chain:

p(x1, ..., xN) = p(x1)p(x2|x1)
N∏

n=3
p(xn|xn−1, xn−2),

where the conditional distribution of xn given xn−1 and xn−2 is
independent of all observations x1, ..., xn−3.
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Exercise 1

Verify that the Markov model in following figure satisfies the
conditional independence properties

p(xn|x1, ..., xn−1) = p(xn|xn−1).

Verify that the Markov model in following figure satisfies the
conditional independence properties

p(xn|x1, ..., xn−1) = p(xn|xn−1, xn−2).
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Solution 1

Since the arrows on the path from xm to xn, with m < n− 1, will meet
head-to-tail at xn−1, which is in the conditioning set, all such paths
are blocked by xn−1 and hence p(xn|x1, ..., xn−1) = p(xn|xn−1) holds.

The same argument applies in the case depicted in following figure,
with the modification that m < n− 2 and that paths are blocked by
xn−1 or xn−2, so the following equation holds

p(xn|x1, ..., xn−1) = p(xn|xn−1, xn−2).
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Discussion

For an Mth order Markov chain, the conditional distribution for a
particular variable depends on the previous M variables.
Suppose the observations are discrete variables having K states. Then
the conditional distribution p(xn|xn−1) in a first-order Markov chain
will be specified by a set of K− 1 parameters for each of the K states
of xn−1 giving a total of K(K− 1) parameters.
An Mth order Markov chain will need KM−1(K− 1) parameters.
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Outline

1 Preliminaries: d-separation criterion

2 Markov Models

3 Hidden Markov Models

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Dec 2024 19 / 33



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Overview

For each observation xn, we introduce a corresponding latent variable
zn, and it satisfies the key conditional independence property that
zn−1 and zn+1 are independent given zn, so that zn+1 ⊥⊥ zn−1|zn.
The joint distribution for this model is

p(x1, ..., xN, z1, ..., zN) = p(z1)

[ N∏
n=2

p(zn|zn−1)

] N∏
n=1

p(xn|zn).
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Hidden Markov Models

Using the d-separation criterion, we see that there is always a path
connecting any two observed variables xn and xm via the latent
variables, and that this path is never blocked.
Thus the predictive distribution p(xn+1|x1, ..., xn) for observation xn+1
given all previous observations does not exhibit any conditional
independence properties, and so our predictions for xn+1 depends on
all previous observations.
The observed variables, however, do not satisfy the Markov property
at any order.
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Exercise 2

By using d-separation, show that the distribution p (x1, . . . , xN) of the
observed data for the state space model represented by the directed
graph in following Figure does not satisfy any conditional
independence properties and hence does not exhibit the Markov
property at any finite order.
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Solution 2

From following figure we see that for any two variables xn and
xm,m ̸= n, there is a path between the corresponding nodes that will
only pass through one or more nodes corresponding to z variables.
None of these nodes will be in the conditioning set and the edges on
the path meet head-to-tail. Thus, there will be an unblocked path
between xn and xm and the model will not satisfy any conditional
independence or finite order Markov properties.
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Transition Probabilities

p(zn|zn−1): probability distribution of zn depends on the state of the
previous latent variable zn−1.
The latent variables are K-dimensional binary variables, this
conditional distribution corresponds to a table of numbers that we
denote by A, the elements of which are known as transition
probabilities:

Ajk = p(znk = 1|zn−1,j = 1), 0 ≤ Ajk ≤ 1,
∑

k
Ajk = 1,

so that A has K(K− 1) independent parameters. And we get

p(zn|zn−1,A) =
K∏

k=1

K∏
j=1

Azn−1,jznk
jk .
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Transition Probabilities
The initial latent node z1 is special in that it does not have a parent
node, and so it has a marginal distribution p(z1) represented by a
vector of probabilities π with elements πk = p(z1k = 1), so that

p(z1|π) =
K∏

k=1
πz1k

k ,
∑

k
πk = 1.
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Transition Probabilities
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Emission Probabilities

p(xn|zn, ϕ): conditional distributions of the observed variables, ϕ is a
set of parameters governing the distribution.
Because xn is observed, the distribution p(xn|zn, ϕ) consists, for a
given value of ϕ, of a vector of K numbers corresponding to the K
possible states of the binary vector zn.
So we represent the emission probabilities:

p(xn|zn, ϕ) =
K∏

k=1
p(xn|ϕk)

znk .
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Joint Probability Distribution

The joint probability distribution over both latent and observed
variables is given by

p(X,Z|ϕ) = p(z1|π)
[ N∏

n=2
p(zn|zn−1,A)

] N∏
m=1

p(xm|zm, ϕ),

where X = {x1, ..., xN}, Z = {z1, ..., zN}, θ = {π,A, ϕ} denotes the
set of parameters governing the model.
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Better Understanding

Illustration of sampling from a hidden Markov model having a 3-state
latent variable z and a Gaussian emission model p(x|z) where x is
2-dimensional.
Transition matrix is fixed so that in any state there is a 5%
probability of making a transition to each of the other states, and
consequently a 90% probability of remaining in the same state.
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Left-to-Right HMM

Set the elements Ajk of A to zero if k < j.
Initial state probabilities for p(z1) are modified so that p(z11) = 1,
p(z1j) = 0 for j ̸= 1, in other words every sequence is constrained to
start in state j = 1.
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Left-to-Right HMM

Further constraints: large changes in the state index do not occur, so
that Ajk = 0 if k > j +∆.
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Exercise

Define an HMM model with three latent states {A,B,C} and observations
{0, 1, 2}. The initial stable probabilities are πA = 1 and πB = πC = 0. The
transition and emission probabilities are as follows:

A B C 0 1 2

A 0.2 0.8 0.0 0.8 0.2 0.0

B 0.0 0.8 0.2 0.0 0.6 0.4

C 0.4 0.0 0.6 0.2 0.0 0.8

(1) Draw the state diagram of this HMM and show the transition
probabilities. (2) Give all state paths with non-zero probability for the
sequence O = 0, 1, 2.
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Q & A

1 Preliminaries: d-separation criterion
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