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Formulating The Motion Planning Problem

The Piano Mover’s Problem
Given

A world W, where W = R2 or W = R3.

A semi-algebraic obstacle region O ⊂ W in the world.

A semi-algebraic robot R in W. It may be a rigid robot or a collection of m rigid
elements (links).

The configuration space C determined by specifying the set of all possible
transformations that can be applied to the robot. Then Cobs and Cfree are derived.

A configuration qI ∈ Xfree designated as initial configuration.

A configuration qG ∈ Xfree designated as goal configuration.

A complete algorithm must compute a continuous path τ : [0, 1]→ Cfree , such that
τ(0) = qI and τ(1) = qG , or correctly report that such path does not exist.

It has been shown that this problem is PSPACE-hard, which implies NP-hard. Hence,
unless P=NP, it is a very hard problem to solve.
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Path Planning versus Motion Planning

Subproblem of the general motion planning problem.

Path planning is the purely geometric problem, without concern for
the dynamics, the duration of motion, or constraints on the motion or
on the control inputs.

The path can be time scaled to create a feasible trajectory.
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Other Concepts

Control inputs: m = n versus m < n. Incapable of following any path,
even if they are collision-free. A car has n = 3 (the position and
orientation of the chassis in the plane) but m = 2 (forward-backward
motion and steering).

Online versus offline: A motion planning problem requiring an
immediate result, because obstacles appear, disappear, or move
unpredictably, calls for a fast, online, planner.

Optimal versus feasible: Objective function J =
∫ T
0 L(x(t), u(t))dt.

Exact versus approximate: Final state ||x(T )− xgoal || < ε.

With or without obstacles: Can be challenging even in the absence of
obstacles, particularly if m < n or optimality is desired.
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Properties of Motion Planners

Multiple-query versus single-query planning: Type of problems.

Anytime planning: Continue to look for better solutions after a first
solution is found, until satisfying certain requirements.

Completeness: A motion planner is said to be complete if it is
guaranteed to find a solution in finite time if one exists, and to report
failure if there is no feasible motion plan.

Computational complexity: Characterizations of the amount of time
the planner takes to run or the amount of memory it requires.
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Motion Planning Methods

Complete methods: Exact representations of the geometry of Cfree .

Grid methods: Discretize Cfree into a grid.

Sampling methods: A random or deterministic function to choose a
sample from the C-space or state space.

Virtual potential fields: Online implementation to avoid obstacles.

Nonlinear optimization: Require an initial guess at the solution, then
represent the trajectory or controls by a finite number of design
parameters, such as the coefficients of a polynomial.

Smoothing: Postprocessing to improve the smoothness.
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Configuration Space Obstacles

Degree of C-space equals the degree of freedom of robot.

Determining whether a robot at a configuration q is in collision with a
known environment generally requires a complex operation involving a
CAD model of the environment and robot.

C = Cfree ∪ Cobs .

The explicit mathematical representation of a C-obstacle can be
exceedingly complex, and for that reason C-obstacles are rarely
represented exactly.
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A 2R Planar Arm

The joint angles of a 2R robot arm.

The arm navigating among obstacles A, B, and C.

The same motion in C-space. Three intermediate points, 4, 7, and
10, along the path are labeled.
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A Circular Planar Mobile Robot

A circular mobile robot (open circle) and a workspace obstacle (gray
triangle). The configuration of the robot is represented by (x , y), the
center of the robot.

In the C-space, the obstacle is “grown” by the radius of the robot and
the robot is treated as a point. Any (x , y) configuration outside the
bold line is collision-free.
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A Circular Planar Mobile Robot

The “grown” C-space obstacles corresponding to two workspace
obstacles and a circular mobile robot. The overlapping boundaries
mean that the robot cannot move between the two obstacles.
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A Planar Mobile Robot That Translates and Rotates
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A Planar Mobile Robot That Translates and Rotates

A triangular mobile robot that can both rotate and translate,
represented by the configuration (x , y , θ).

The C-space obstacle when the robot is restricted to θ = 0.

Full 3-dimensional C-space obstacle shown in slices at 10◦ increments.
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Distance to Obstacles and Collision Detection

Given a C-obstacle B and a configuration q, let d(q,B) be the
distance between robot and obstacle, then

d(q,B) > 0, no contact with the obstacle;
d(q,B) = 0, contact;
d(q,B) < 0, penetration.

A distance-measurement algorithm determines d(q,B).

A collision-detection routine determines whether d(q,Bi ) ≤ 0 for any
C-obstacle Bi .
A collision-detection routine returns a binary result and may or may
not utilize a distance-measurement algorithm at its core.
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Distance to Obstacles and Collision Detection

Approximate the robot and obstacles as unions of overlapping spheres.

Given a robot at q represented by k spheres of radius Ri centered at
ri (q), i = 1, ..., k , and an obstacle B represented by l spheres of
radius Bj centered at bj , j = 1, ..., l , the distance

d(q,B) = min
i ,j
||ri (q)− bj || − Ri − Bj .
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Graphs and Trees

Many motion planners explicitly or implicitly represent the C-space or
state space as a graph.

Node → configuration or state; edge → the ability to move from n1
to n2 while satisfying all constraints.

Directed or undirected.

Weighted or unweighted.

A tree is a digraph: (1) no cycles; (2) each node has at most one
parent node.
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Graphs Search

Once the free space is represented as a graph, a motion plan can be
found by searching the graph for a path from the start to the goal.

Breadth-first search (BFS).

Depth-first search (DFS).

Uniform-cost search (UCS).

Greedy search.

A* search.
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Complete Path Planners

Complete path planners rely on an exact representation of the free
C-space Cfree . Mathematically and algorithmically sophisticated,
impractical for many real systems.

Reachability: From every point q ∈ Cfree , a free path to a point
q′ ∈ R can be found trivially (e.g., a straight-line path).

Connectivity: For each connected component of Cfree , there is one
connected component of Roadmap R.

While constructing a roadmap of Cfree is complex in general, some
problems admit simple roadmaps.

A suitable roadmap is the weighted undirected visibility graph, with
nodes at the vertices of the C-obstacles and edges between the nodes
that can “see” each other.
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Complete Path Planners
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Introduction

A search algorithm like A* requires a discretization of the search
space. The simplest discretization of C-space is a grid.

For n-dimensional configuration space, we desire k grid points along
each dimension, the C-space is represented by kn grid points.

Move in axis-aligned directions or multiple dimensions simultaneously?

If only axis-aligned motions → Manhattan distance.

A grid-based path planner is resolution complete: it will find a
solution if one exists at the level of discretization of the C-space.
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Introduction

A 4-connected grid point and an 8-connected grid point for a space
n = 2.

Grid points spaced at unit intervals. The Euclidean distance between
the two points indicated is

√
5 while the Manhattan distance is 3.

A grid representation of the C-space and a minimum-length
Manhattan-distance path.
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Introduction
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Multi-Resolution Grid Representation

Any cells that are in contact with a C-obstacle are subdivided further,
up to a specified maximum resolution.

Use only 10 cells to represent an obstacle at the same resolution as a
fixed grid that uses 64 cells.
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Introduction

Inspired by potential energy fields in nature, such as gravitational and
magnetic fields.

E.g., the potential energy of a mass m in height h is mgh and the
force acting on it is −mg . The force will cause the mass to fall to the
Earth’s surface.

In robotics, the goal is assigned a low virtual potential and obstacles
are assigned a high virtual potential.

Typically the gradient of the field can be calculated quickly, so the
motion can be calculated in real time (reactive control) instead of
planned in advance.

The robot can get stuck in local minima of the potential field, away
from the goal, even when a feasible motion to the goal exists.
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A Point in C-space

Assume a point robot in its C-space. qgoal is typically encoded by a
quadratic potential energy “bowl” with zero energy at the goal

Pgoal(q) =
1

2
(q − qgoal)

TK (q − qgoal),

where K is a symmetric positive-definite weighting matrix.

The force induced by this potential is

Fgoal(q) = −
∂Pgoal
∂q

= K (qgoal − q),

an attractive force proportional to the distance from the goal.
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A Point in C-space

The repulsive potential induced by a C-obstacle B can be calculated
from the distance d(q,B) to the obstacle

PB(q) =
k

2d2(q,B)
,

where k > 0 is a scaling factor, d(q,B) > 0.

The force induced by the obstacle potential is

FB(q) = −∂PB
∂q

=
k

d3(q,B)

∂d

∂q
.
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A Point in C-space

The total potential is obtained by summing the attractive goal
potential and the repulsive obstacle potentials,

P(q) = Pgoal(q) +
∑
i

PBi (q),

yielding a total force

F (q) = Fgoal(q) +
∑
i

FBi (q).
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A Point in C-space
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A Point in C-space

To actually control the robot using the calculated F (q), we treat the
calculated force as a commanded velocity:

u = F (q).

Using the simple obstacle potential, even distant obstacles have a
nonzero effect on the motion of the robot.

To speed up evaluation of the repulsive terms, distant obstacles could
be ignored.

UB(q) =

{
k
2 (dr−d(q,B)drd(q,B) )2 if d(q,B) < dr ,

0 otherwise.
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Navigation Functions (Option)

A significant problem with the potential field method is local minima.

An approach to local-minimum-free gradient following is based on
replacing the virtual potential function with a navigation function.

A navigation function φ(q) is a type of virtual potential function that

is smooth (or at least twice differentiable) on q;
has a bounded maximum value on the boundaries of all obstacles;
has a single minimum at qgoal ;
has a full-rank Hessian ∂2φ/∂q2 at all critical points q where
∂φ/∂q = 0.
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