

EE211: Robotic Perception and Intelligence

Lecture 4 Basic Search Methods

Jiankun WANG

Department of Electronic and Electrical Engineering
Southern University of Science and Technology

Undergraduate Course, Oct 2024

Outline

1 Shortest Path Problems

2 Uniform-Cost Search

3 Greedy Search

4 Optimal Search

Outline

1 Shortest Path Problems

2 Uniform-Cost Search

3 Greedy Search

4 Optimal Search

Elements of A Planning Problem

- State space
- Transition system
- Goal
- Constraints
- Cost or reward function

- The set \mathcal{X} of all situations that could possibly arise
- The state $x \in \mathcal{X}$ is a description of one of these situations
 - 2D Position and heading of a car
 - 3D position, attitude, linear and angular velocity of a drone
- **World state**, state of the world, the state of everything else besides what we can control directly
 - States of other robots
 - States of environmental features

Transition System

- Set of states \mathcal{S}
- Set of actions \mathcal{A}
- Transition relation $s_1 \xrightarrow{a} s_2$
- Dynamic system, $\frac{dx(t)}{dt} = F(x(t), u(t))$ given a control input $u(t)$

Remark

Relation: (discrete) transition systems are typically used algorithmically for computing plans that are executed on (continuous) dynamical systems!

Goal, Constraints & Cost

- Initial state
 - State of the system at the beginning of the plan
- Goal state
 - A set of states that the system can reach at the end of the plan
- Constraints
 - Obstacle avoidance, velocity limitation...
- Cost or reward function
 - Trajectory length, time cost, energy consumption...

Concept of The Shortest Path Problem

- Given

- State space \mathcal{X} , including free space \mathcal{X}_{free} and obstacle space \mathcal{X}_{obs}
- an initial state s_0
- a set of goal states $\mathcal{S}_{goal} = s_{g1}, s_{g2}, \dots$
- a transition system that determine $s_1 \xrightarrow{a} s_2$

- Find

$$\sigma^* = \arg \min_{\sigma \in \Sigma} c(\sigma)$$

$$s.t. \sigma(0) = s_0,$$

$$\sigma(T) \in \mathcal{S}_{goal},$$

$$\sigma(t) \in \mathcal{X}_{free}.$$

Properties of Search Algorithms

- **Completeness:** A search algorithm is complete if it gives a solution if one exists or returns failure in finite time.
- **Optimality:** If a valid solution is the best (lowest cost) among all generated solutions, then that solution is optimal.
- **Time complexity:** Time cost (or number of steps) to complete a task, as a function of input size.
- **Space complexity:** Maximum storage or memory to complete a task, as a function of input size.

A Framework of Search Algorithms

Algorithm 1: Forward search algorithm

```
Q  $\leftarrow \{s_0\}$ ;                                // Initialize the queue
V  $\leftarrow \{s_0\}$ ;                                // Initialize the visited set
Parent( $s_0$ )  $\leftarrow \text{null}$ ;
while  $Q$  is not empty do
    Take the first element  $s$  from  $Q$ ;
    if  $s \in S_{goal}$  then
        return  $\sigma$ ;                            // A valid path is found
    for all  $s, s'$  such that  $s \xrightarrow{a} s'$  do
        if  $s' \notin V$  then
            insert  $s'$  into  $Q$ ;                // Add new states to Q
            add  $s'$  to  $V$ ;                  // ...and mark them as visited
            Parent( $s'$ )  $\leftarrow s$ ;          // Reconstruct the path backward
    return failure;                            // No valid path exists
```

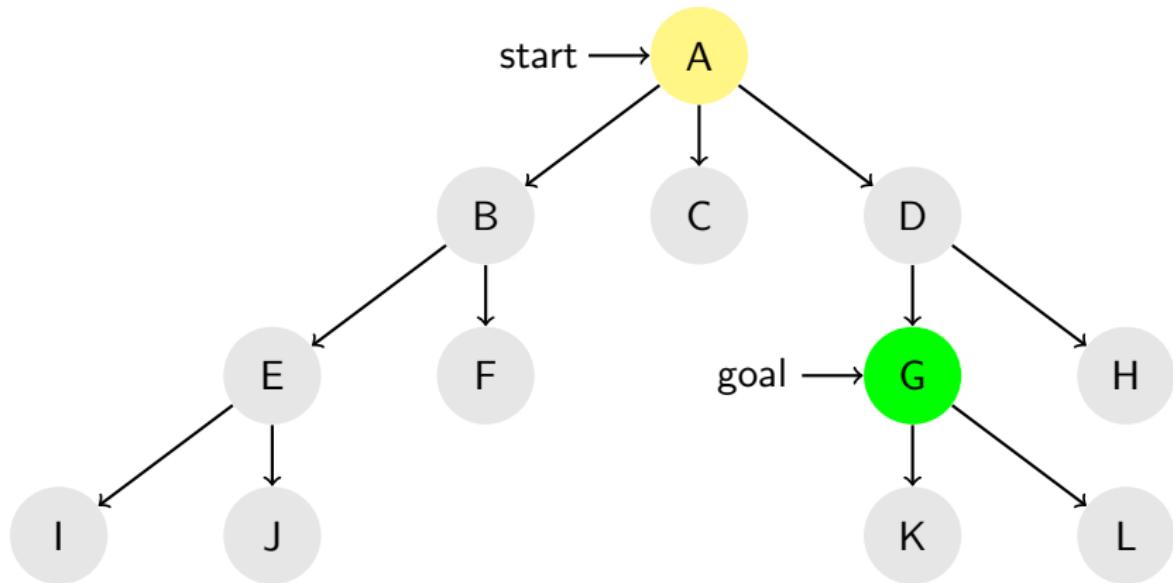

Depth-First Search

In Depth-First Search, new states are added at the **front** of the queue.

Breadth-First Search

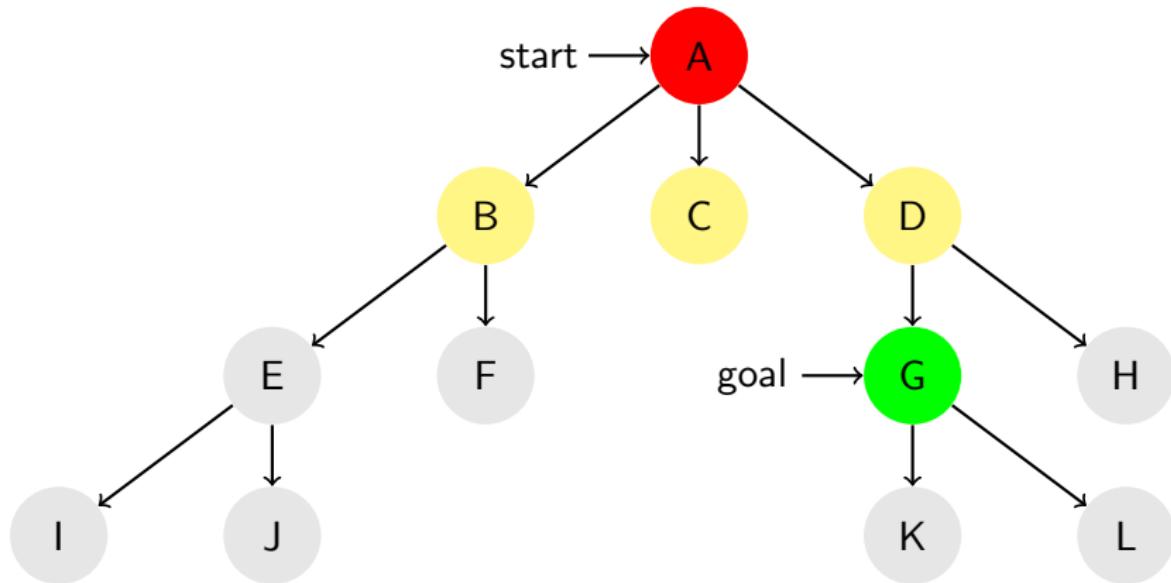
In Breadth-First Search, new states are added at the **back** of the queue.

Depth-First Search: Step 1



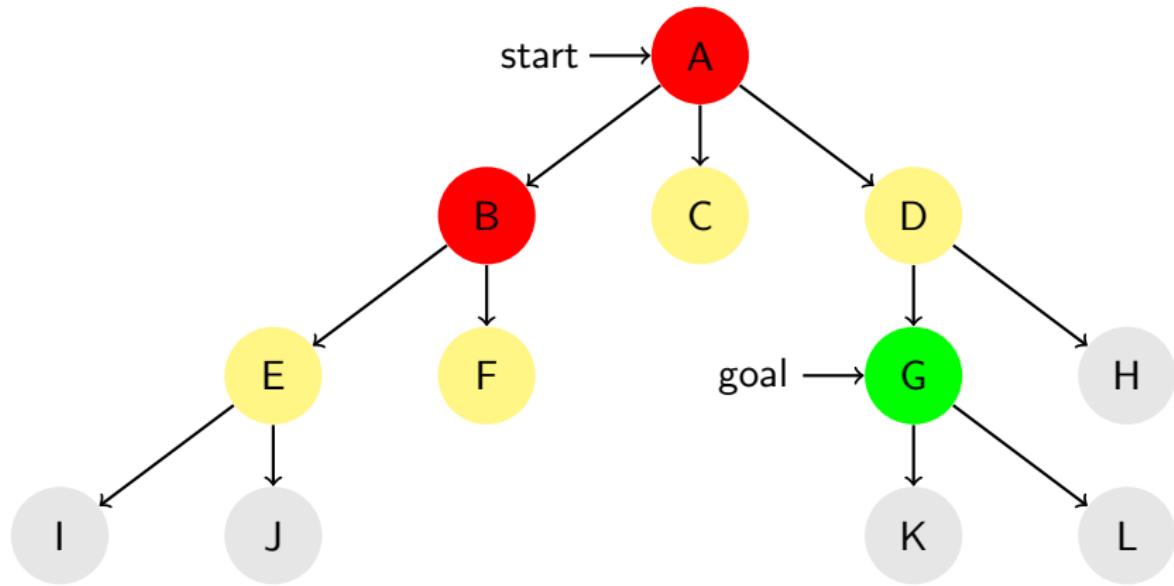
- $Q = \{A\}$
- $V = \{A\}$

Depth-First Search: Step 2



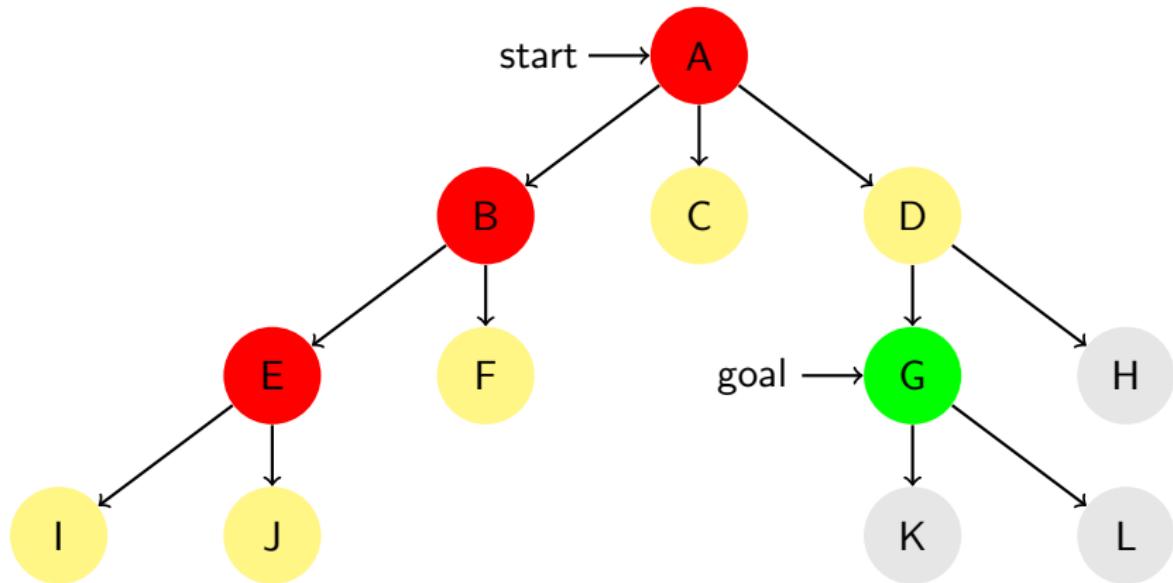
- $Q = \{B, C, D\}$
- $V = \{A, B, C, D\}$

Depth-First Search: Step 3



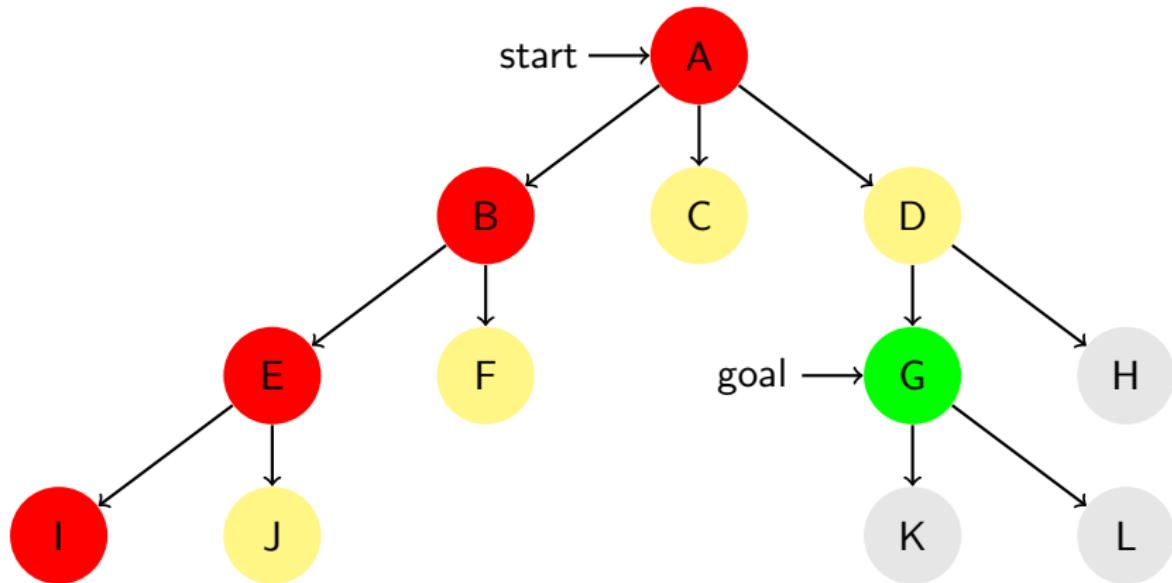
- $Q = \{E, F, C, D\}$
- $V = \{A, B, C, D, E, F\}$

Depth-First Search: Step 4



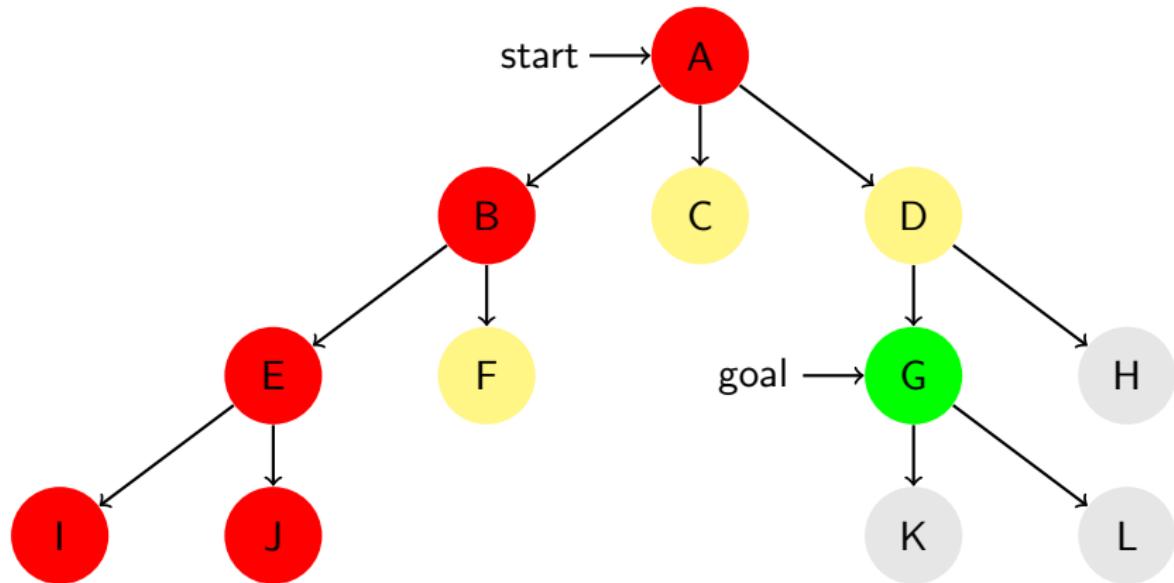
- $Q = \{I, J, F, C, D\}$
- $V = \{A, B, C, D, E, F, I, J\}$

Depth-First Search: Step 5



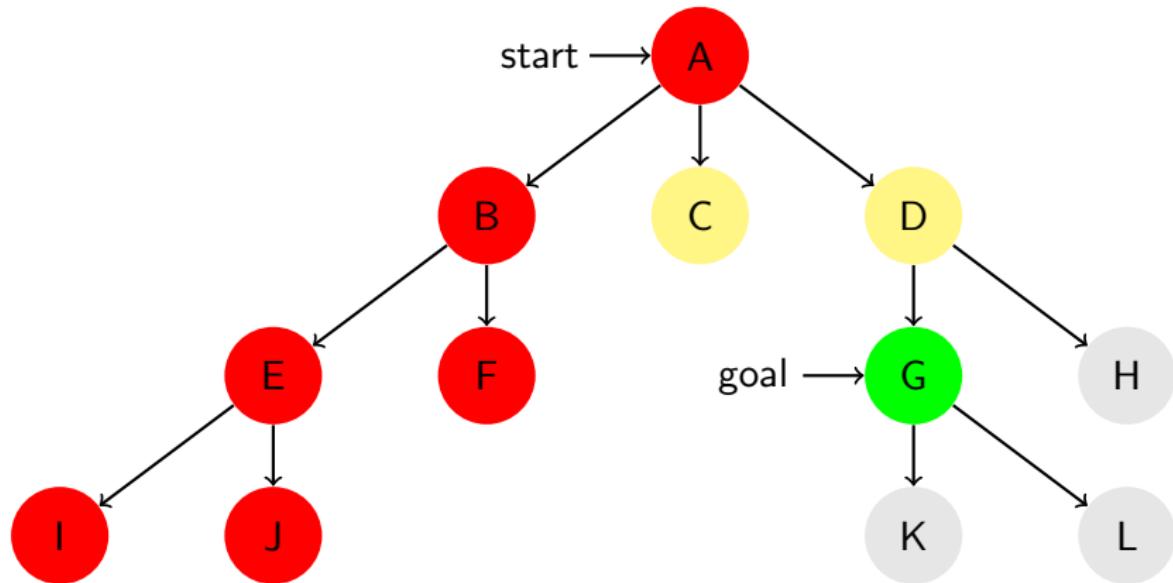
- $Q = \{J, F, C, D\}$
- $V = \{A, B, C, D, E, F, I, J\}$

Depth-First Search: Step 6



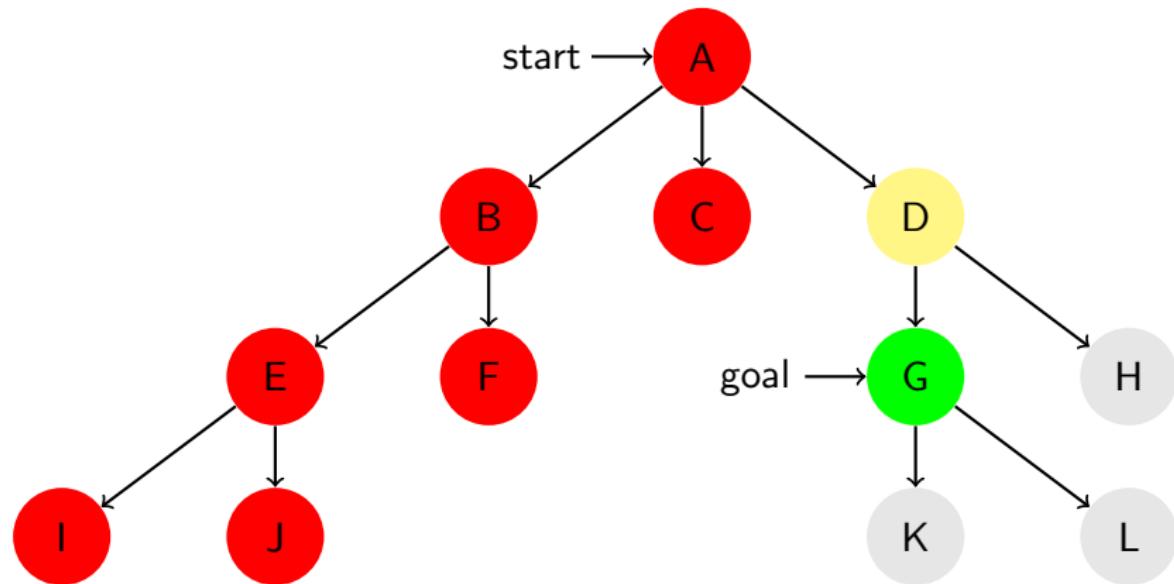
- $Q = \{F, C, D\}$
- $V = \{A, B, C, D, E, F, I, J\}$

Depth-First Search: Step 7



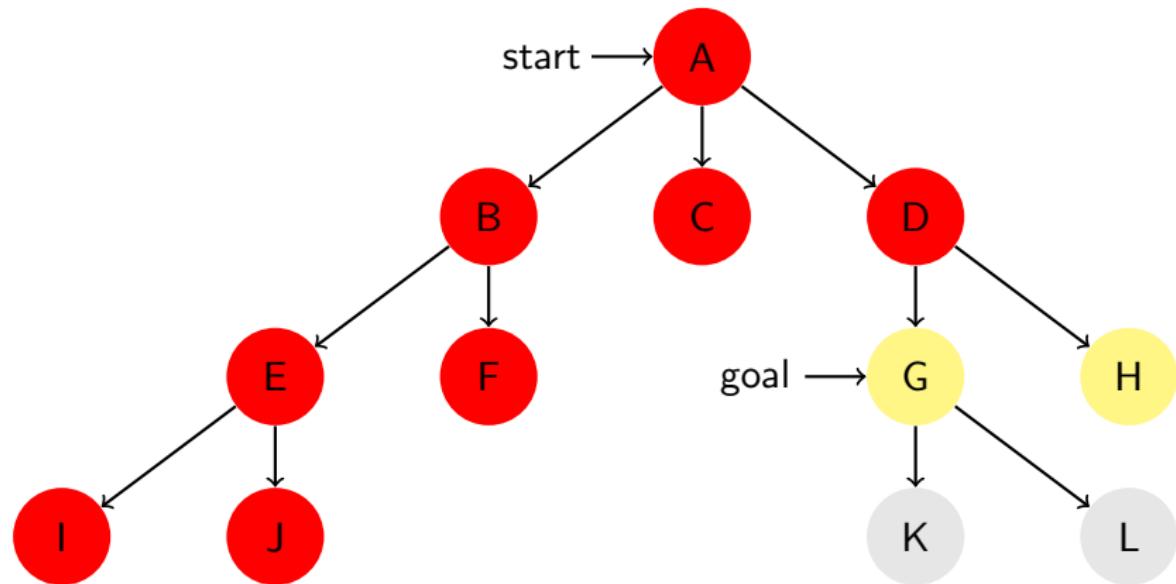
- $Q = \{C, D\}$
- $V = \{A, B, C, D, E, F, I, J\}$

Depth-First Search: Step 8



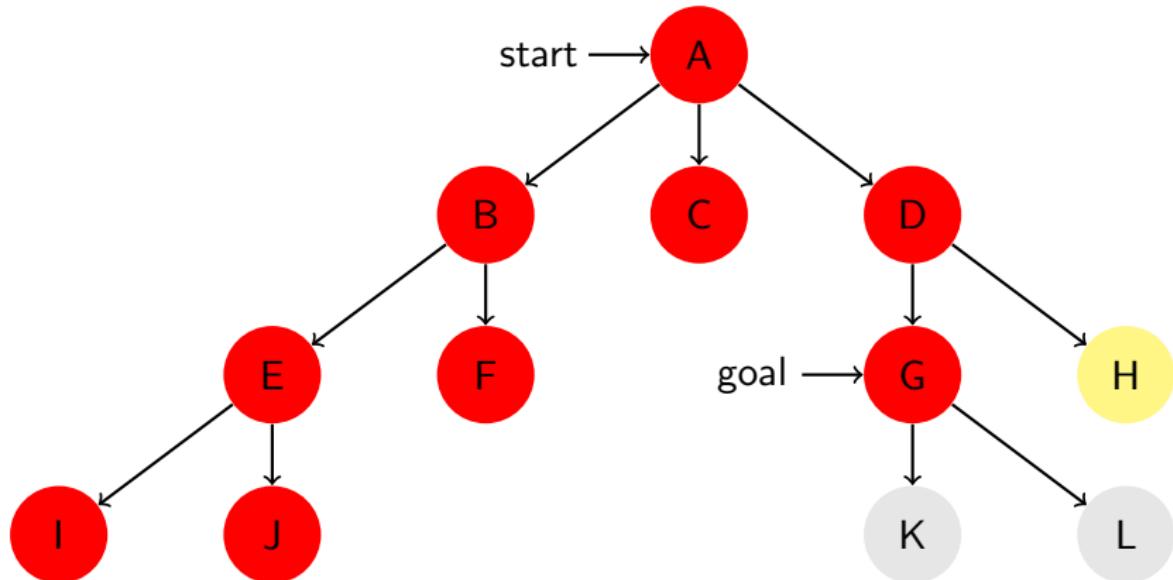
- $Q = \{D\}$
- $V = \{A, B, C, D, E, F, I, J\}$

Depth-First Search: Step 9



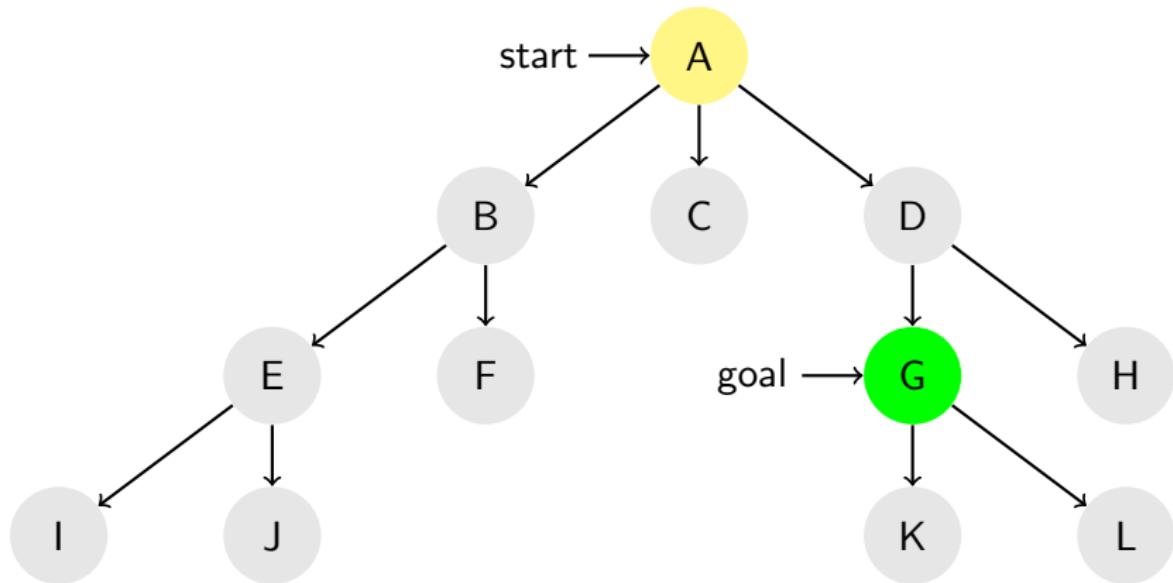
- $Q = \{G, H\}$
- $V = \{A, B, C, D, E, F, I, J, G, H\}$

Depth-First Search: Step 10



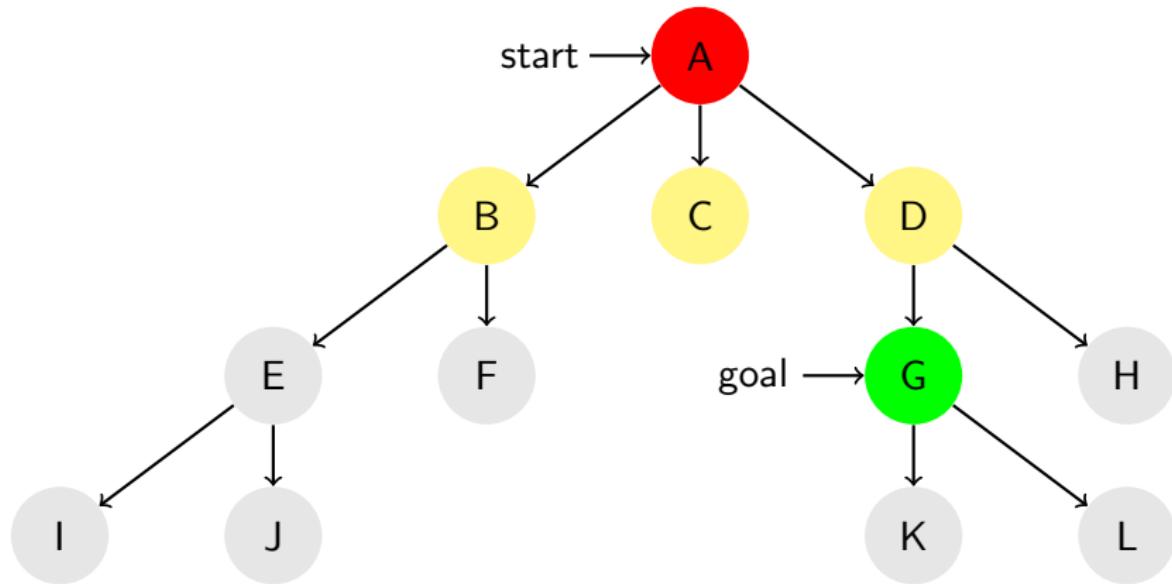
- $Q = \{H\}$
- $V = \{A, B, C, D, E, F, I, J, G, H\}$
- Return $\{A, D, G\}$

Breadth-First Search: Step 1



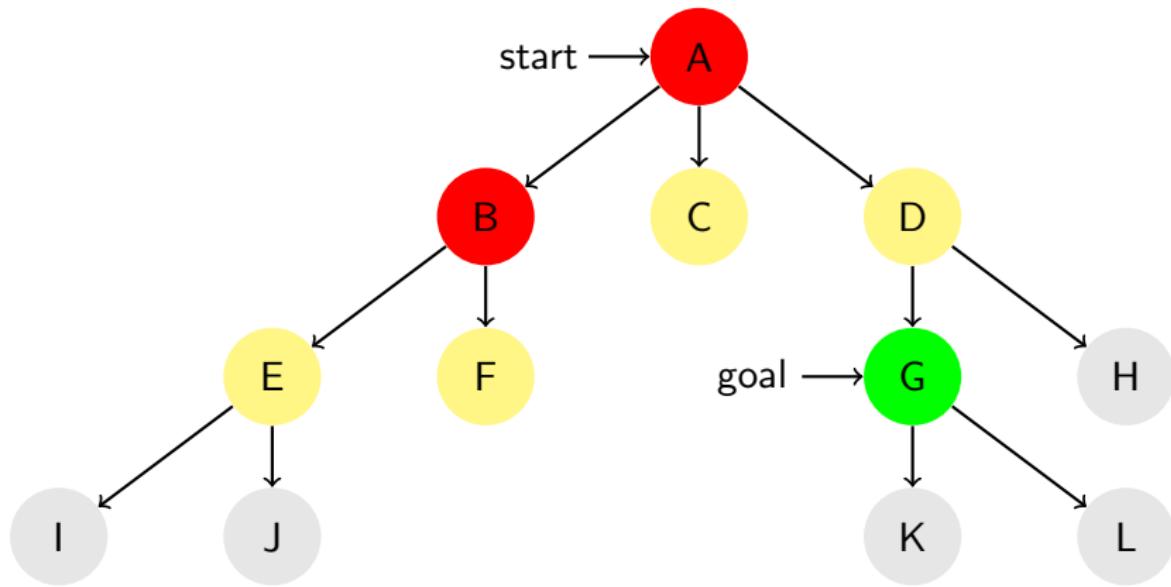
- $Q = \{A\}$
- $V = \{A\}$

Breadth-First Search: Step 2



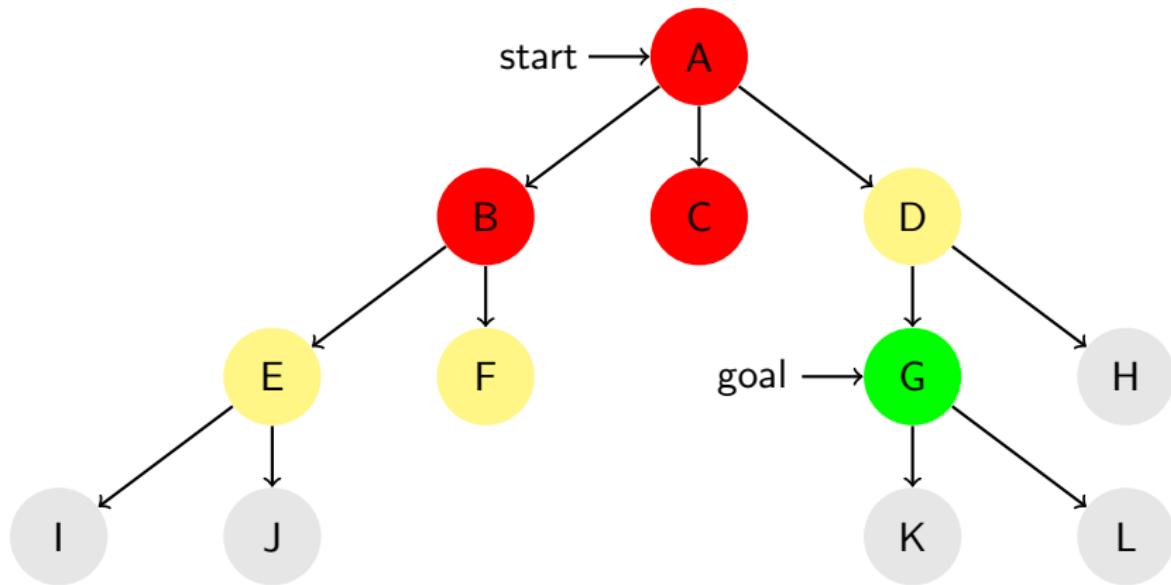
- $Q = \{B, C, D\}$
- $V = \{A, B, C, D\}$

Breadth-First Search: Step 3



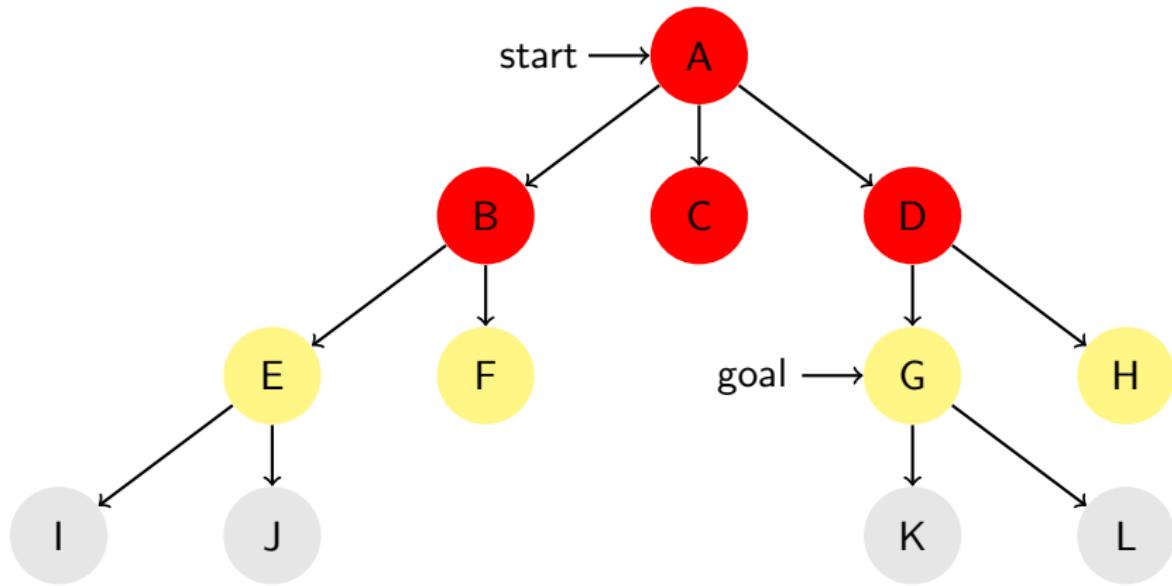
- $Q = \{C, D, E, F\}$
- $V = \{A, B, C, D, E, F\}$

Breadth-First Search: Step 4



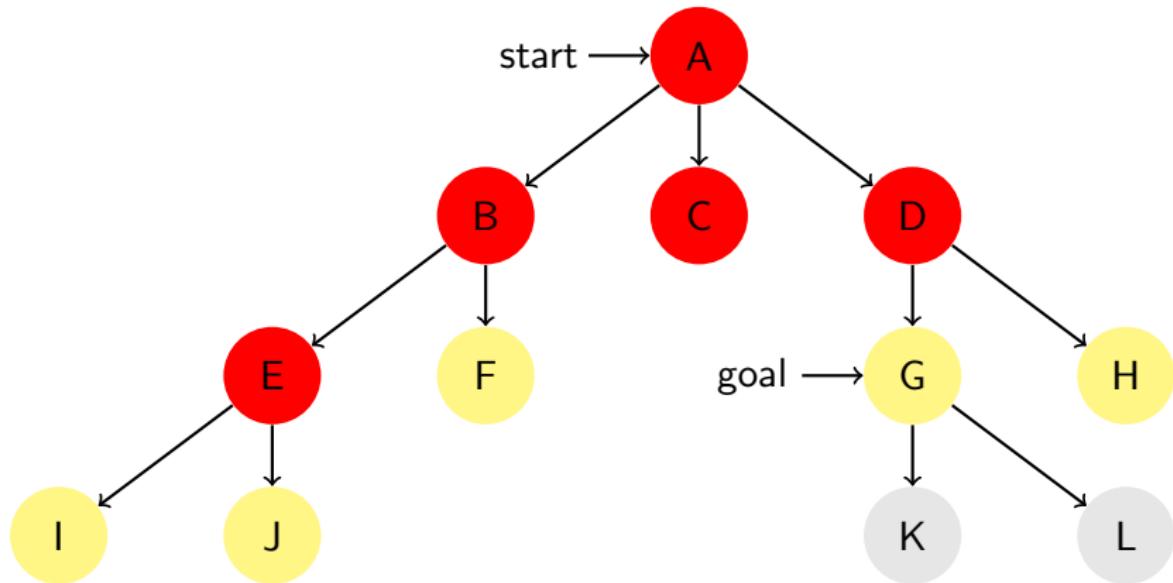
- $Q = \{D, E, F\}$
- $V = \{A, B, C, D, E, F\}$

Breadth-First Search: Step 5



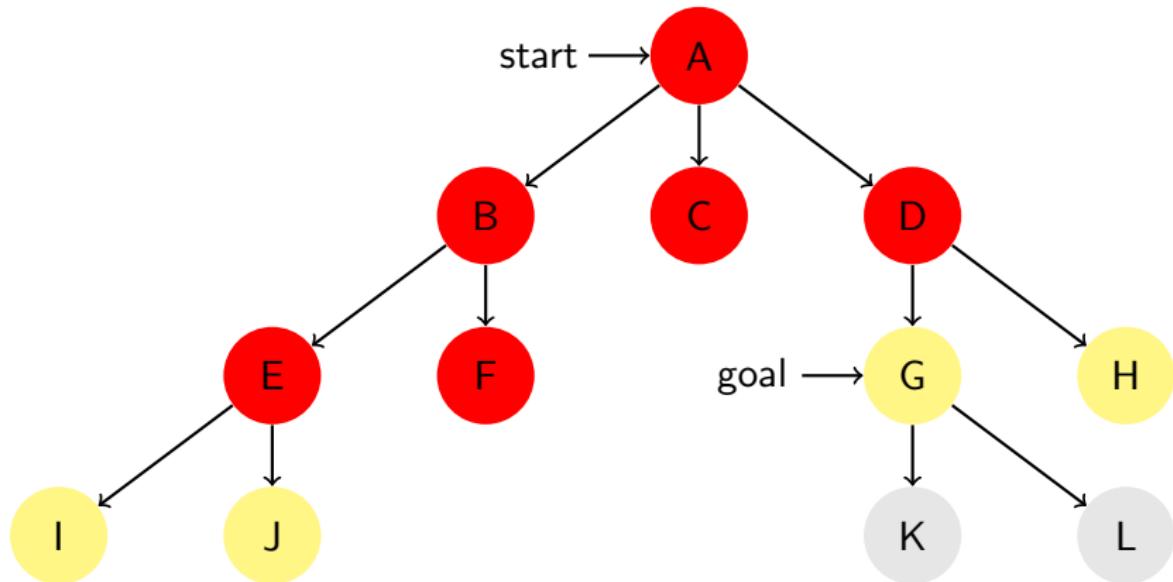
- $Q = \{E, F, G, H\}$
- $V = \{A, B, C, D, E, F, G, H\}$

Breadth-First Search: Step 6



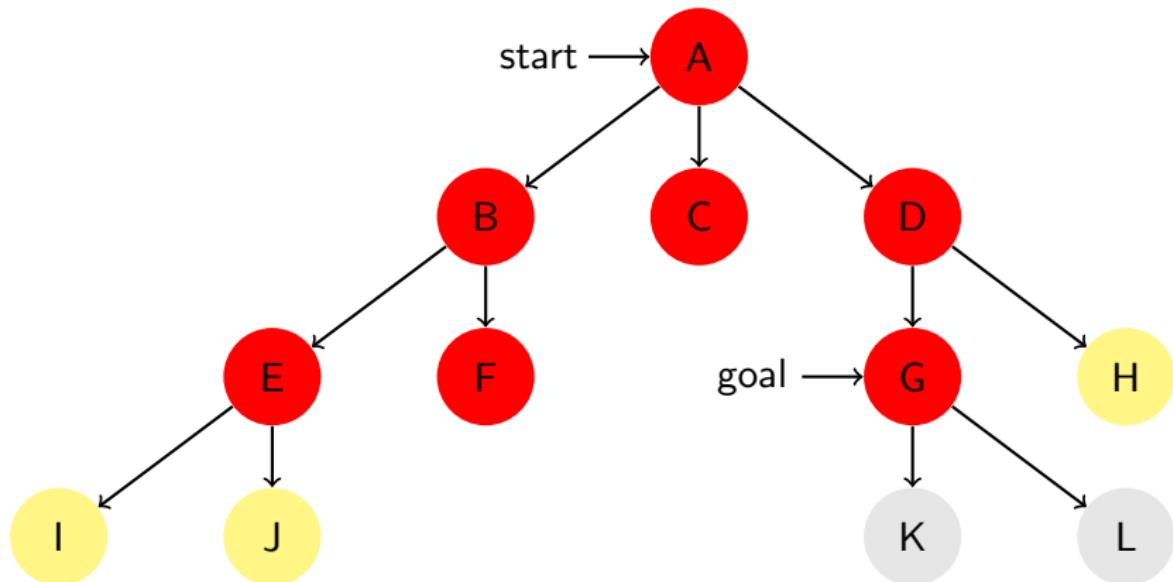
- $Q = \{F, G, H, I, J\}$
- $V = \{A, B, C, D, E, F, G, H, I, J\}$

Breadth-First Search: Step 7



- $Q = \{G, H, I, J\}$
- $V = \{A, B, C, D, E, F, G, H, I, J\}$

Breadth-First Search: Step 8



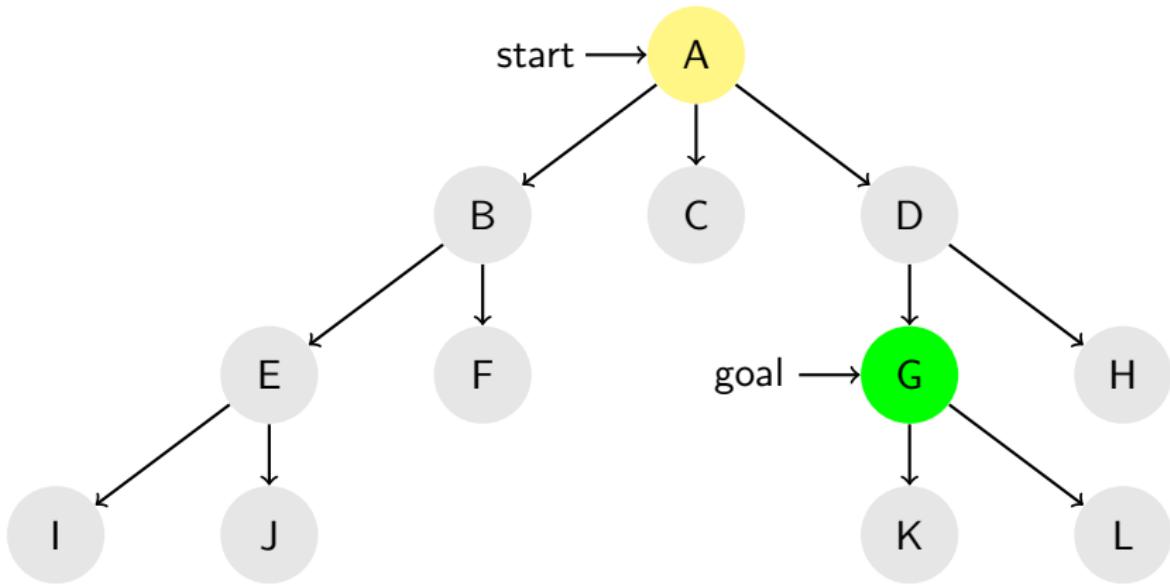
- $Q = \{H, I, J\}$
- $V = \{A, B, C, D, E, F, G, H, I, J\}$
- Return $\{A, D, G\}$

Properties of DFS & BFS

- Completeness
 - BFS is complete on finite or countably infinite transition systems
 - DFS is complete only on finite transition systems
- Time complexity
 - Proportional to the number of visited nodes
- Space complexity
 - Proportional to the max size of the priority queue

Worst-case Complexity of BFS & DFS

- Branching factor $b=3$, maximum depth $m=4$, minimum goal depth $d=3$



Iterative Deepening

Algorithm 2: Iterative Deepening

```
 $d \leftarrow 1;$ 
while  $d \leq m$  do
  Run DFS up to depth  $d$ ;
  if a path  $\sigma$  is found then
     $\quad \text{return } \sigma;$ 
   $d \leftarrow d + 1;$ 
return failure;
```

- Branching factor $b=3$, maximum depth $m=4$, minimum goal depth $d=3$
- Explore the graph in breadth-first order, using depth-first search.

Concept of The Shortest Path Problem

- Given

- State space \mathcal{X} , including free space \mathcal{X}_{free} and obstacle space \mathcal{X}_{obs}
- an initial state s_0
- a set of goal states $\mathcal{S}_{goal} = s_{g1}, s_{g2}, \dots$
- a transition system that determine $s_1 \xrightarrow{a} s_2$

- Find

$$\sigma^* = \arg \min_{\sigma \in \Sigma} c(\sigma)$$

$$\begin{aligned} s.t. \quad & \sigma(0) = s_0, \\ & \sigma(T) \in \mathcal{S}_{goal}, \\ & \sigma(t) \in \mathcal{X}_{free}. \end{aligned}$$

Concept of The Shortest Path Problem

- $c(\sigma) := \sum_{i=1}^n w(s_{i-1}, a_i, s_i)$
- State transitions on a transition system, or edges in a graph, are often abstractions of physical motions
- We know or can estimate in advance what the cost of a particular transition is

Outline

1 Shortest Path Problems

2 Uniform-Cost Search

3 Greedy Search

4 Optimal Search

Concept of Uniform-Cost Search

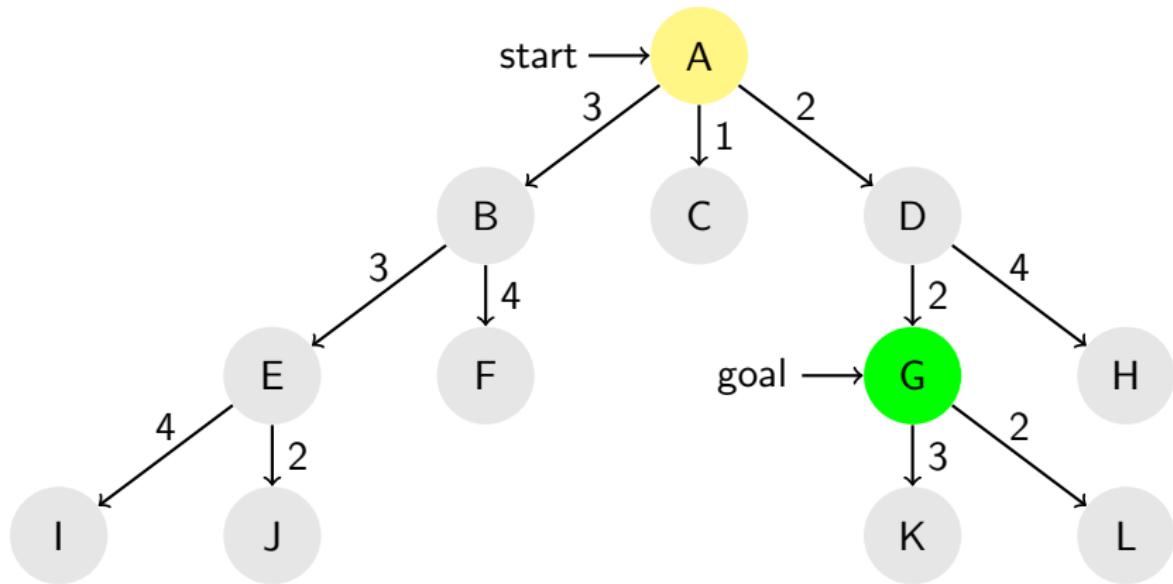
- BFS can find the “minimum depth” path (Recall: In Breadth-First Search, new states are added at the **back** of the queue.)
- Idea: Use “cost” instead of “depth” when sorting nodes in the queue
- Keep track of the “costToCome” of each visited state, and its Parent (The costToCome of unvisited states is implicitly initialized to $+\infty$)

Uniform-Cost Search

Algorithm 3: Uniform-Cost Search

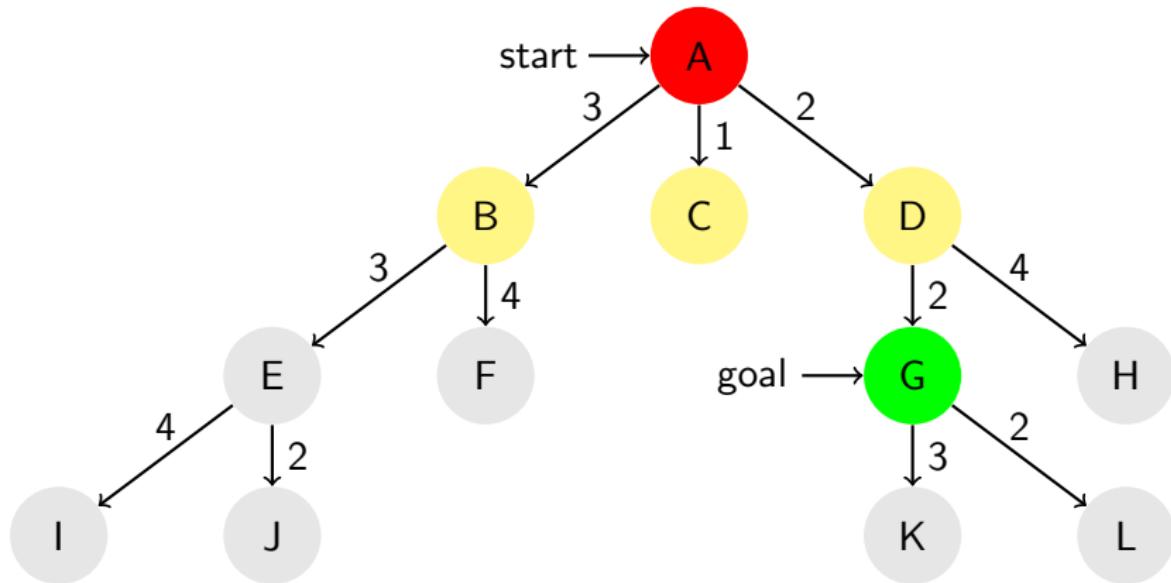
```
Q ← { $s_0$ };  
costToCome = 0;  
Parent( $s_0$ ) ← null;  
while  $Q$  is not empty do  
    Take the minimum costToCome element  $s$  from  $Q$ ;  
    if  $s \in \mathcal{S}_{goal}$  then  
         $\quad \text{return } \sigma$ ;  
    for all  $s, s'$  such that  $s \xrightarrow{a} s'$  do  
        newCostToCome ← costToCome +  $w(s, a, s')$ ;  
        if newCostToCome < costToCome( $s'$ ) then  
            costToCome( $s'$ ) ← newCostToCome;  
            Parent( $s'$ ) ←  $s$ ;  
            update  $s'$  in  $Q$ ;  
return failure;
```


Uniform-Cost Search: Step 1



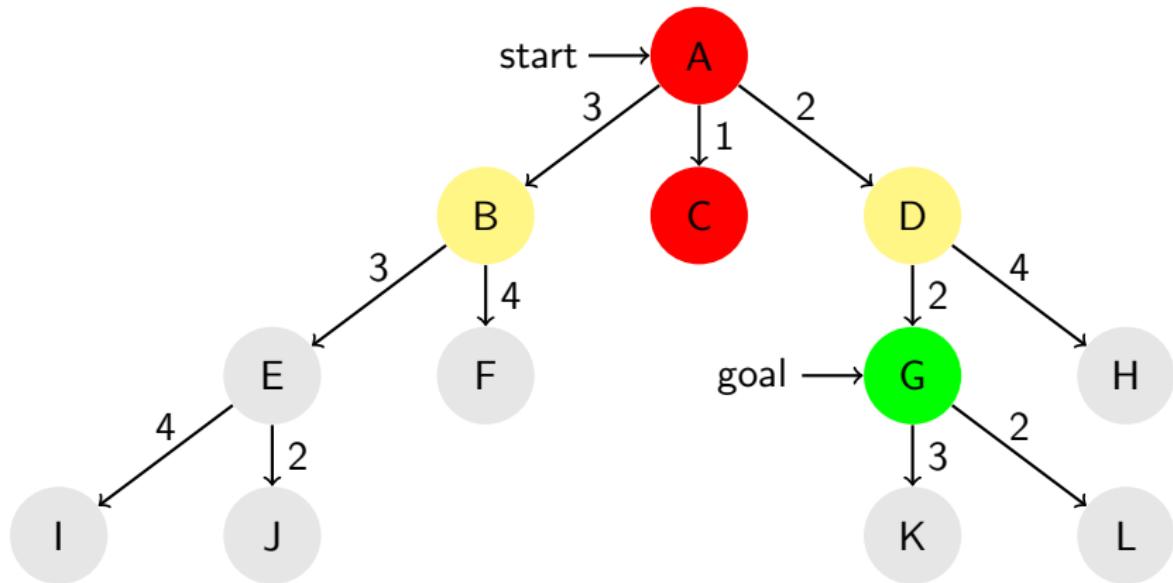
- $Q = \{A\}$
- $\text{costToCome} = \{A : 0\}$

Uniform-Cost Search: Step 2



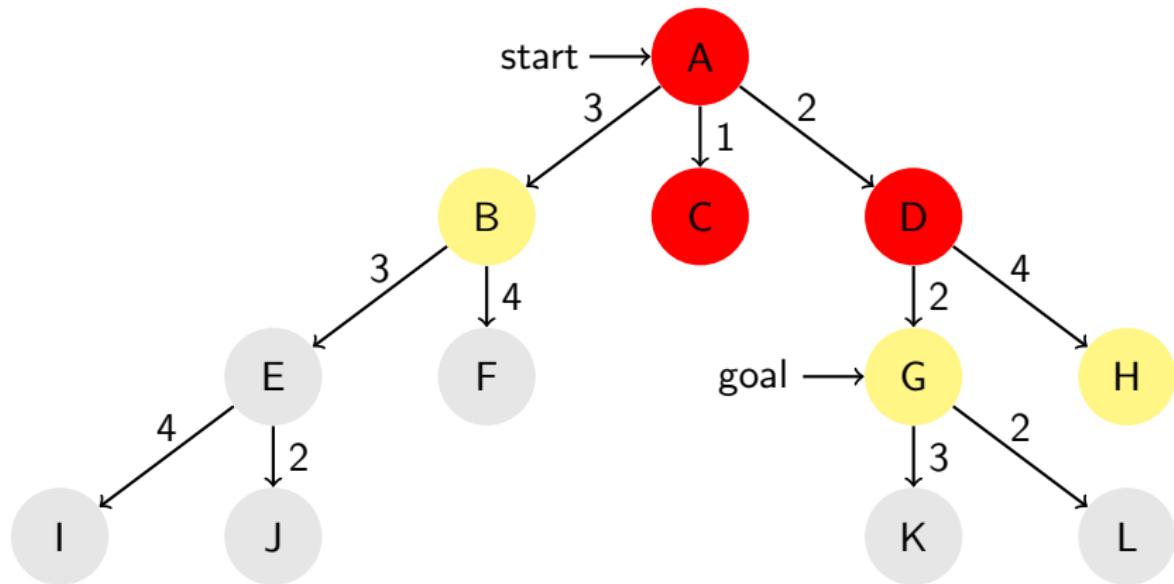
- $Q = \{B, C, D\}$
- $\text{costToCome} = \{A : 0, C : 1; D : 2; B : 3\}$

Uniform-Cost Search: Step 3



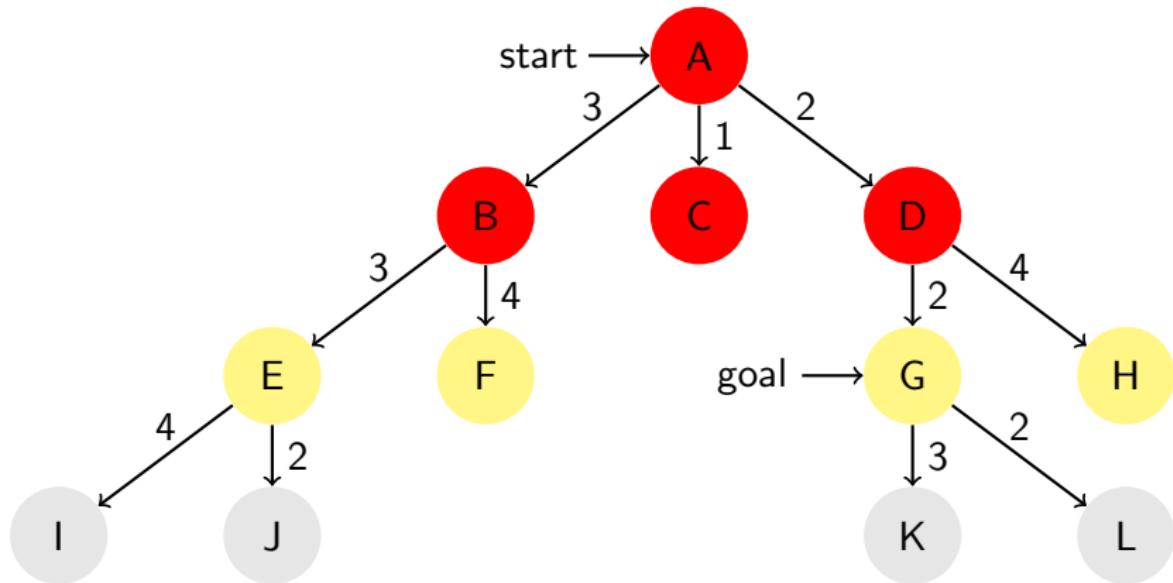
- $Q = \{B, D\}$
- $\text{costToCome} = \{A : 0, C : 1; D : 2; B : 3\}$

Uniform-Cost Search: Step 4



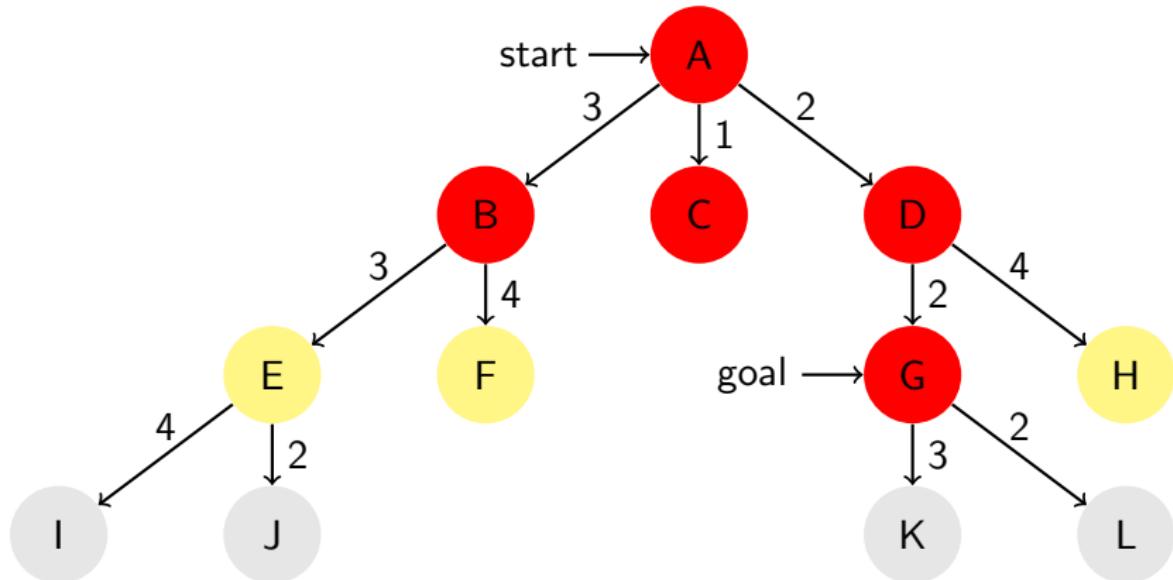
- $Q = \{B, G, H\}$
- $\text{costToCome} = \{A : 0, C : 1; D : 2; B : 3, G : 4, H : 6\}$

Uniform-Cost Search: Step 5



- $Q = \{G, H, E, F\}$
- $\text{costToCome} = \{A : 0, C : 1; D : 2; B : 3, G : 4, H : 6, E : 6, F : 7\}$

Uniform-Cost Search: Step 5



- $Q = \{H, E, F\}$
- $\text{costToCome} = \{A : 0, C : 1; D : 2; B : 3, G : 4, H : 6, E : 6, F : 7\}$
- Reruen {A, D, G}

Uniform-Cost Search

- Extension of BFS to the weighted graph case
- Complete
- Guided by path cost rather than path depth
- Optimal (How about **BFS & DFS?**)

Uniform-Cost Search

- Extension of BFS to the weighted graph case
- Complete
- Guided by path cost rather than path depth
- Optimal (How about **BFS & DFS?**)
- For finding the shortest path, BFS is optimal (only to the unweighted graph case) but DFS is not optimal (Such as Cycle Path)

Outline

1 Shortest Path Problems

2 Uniform-Cost Search

3 Greedy Search

4 Optimal Search

Greedy (Best-First) Search

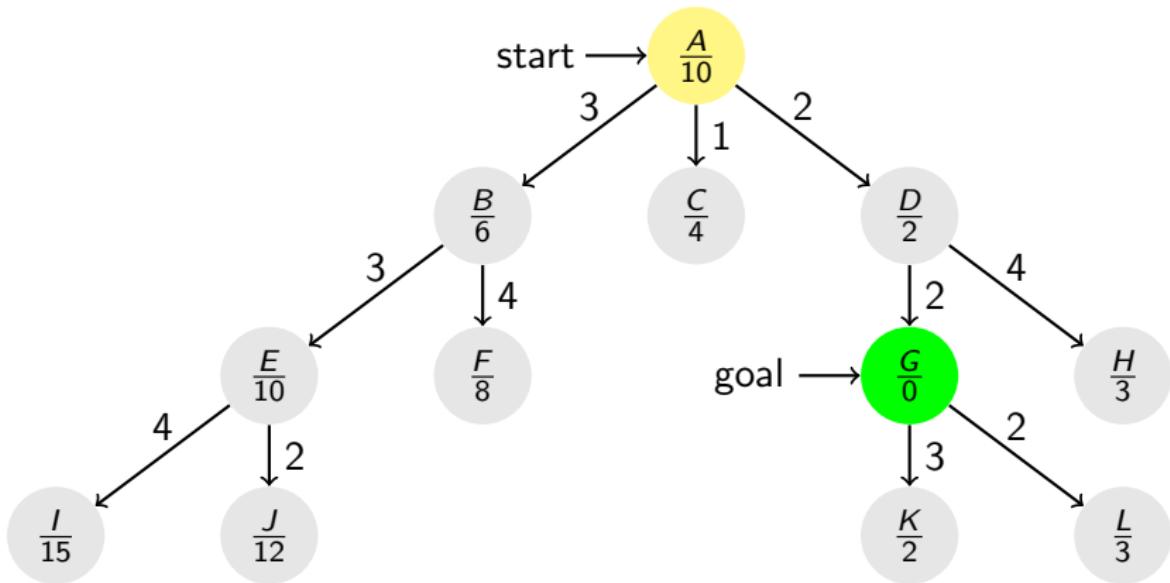
- BFS can find the “minimum-depth” path
- UCS can find the “minimum cost” path
- Forward exploration in all directions
- What if we can get information from the goal
- **Heuristic function:** minimize the estimated distance to the goal

Greedy (Best-First) Search

Algorithm 4: Greedy (Best-First) Search

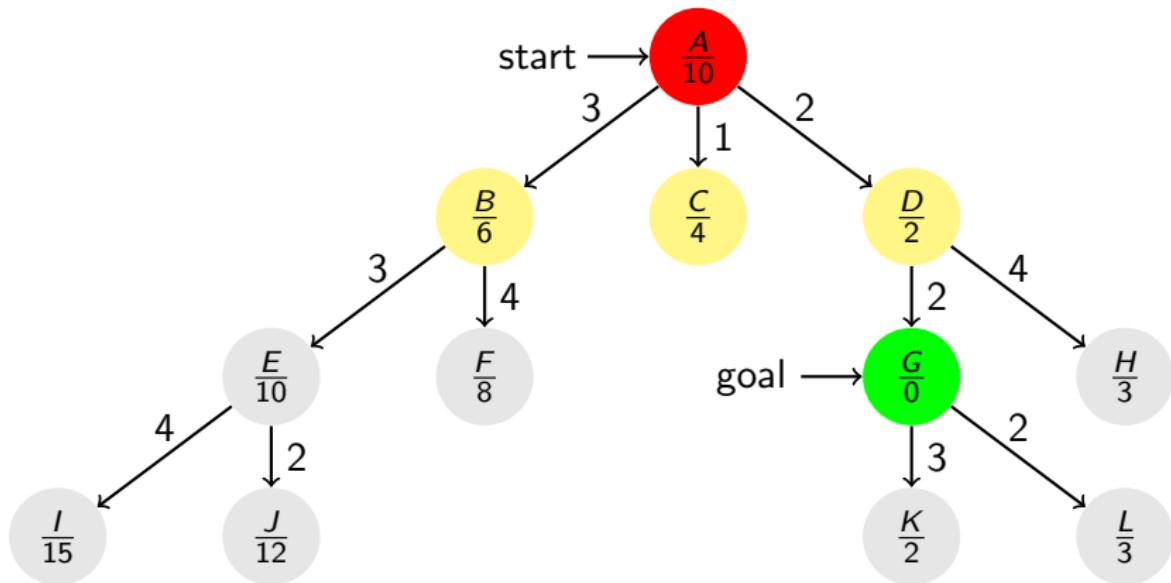
```
 $Q \leftarrow \{s_0\};$ 
 $\text{costToCome} = 0;$ 
 $\text{Parent}(s_0) \leftarrow \text{null};$ 
while  $Q$  is not empty do
    Take the minimum heuristic cost element  $s$  from  $Q$ ;
    if  $s \in \mathcal{S}_{goal}$  then
         $\quad \text{return } \sigma;$ 
    for all  $s, s'$  such that  $s \xrightarrow{a} s'$  do
        if  $s' \notin V$  then
             $\quad \text{insert } s' \text{ into } Q;$ 
             $\quad \text{add } s' \text{ to } V;$ 
             $\quad \text{Parent}(s') \leftarrow s;$ 
    return failure;
```


Greedy (Best-First) Search: Step 1



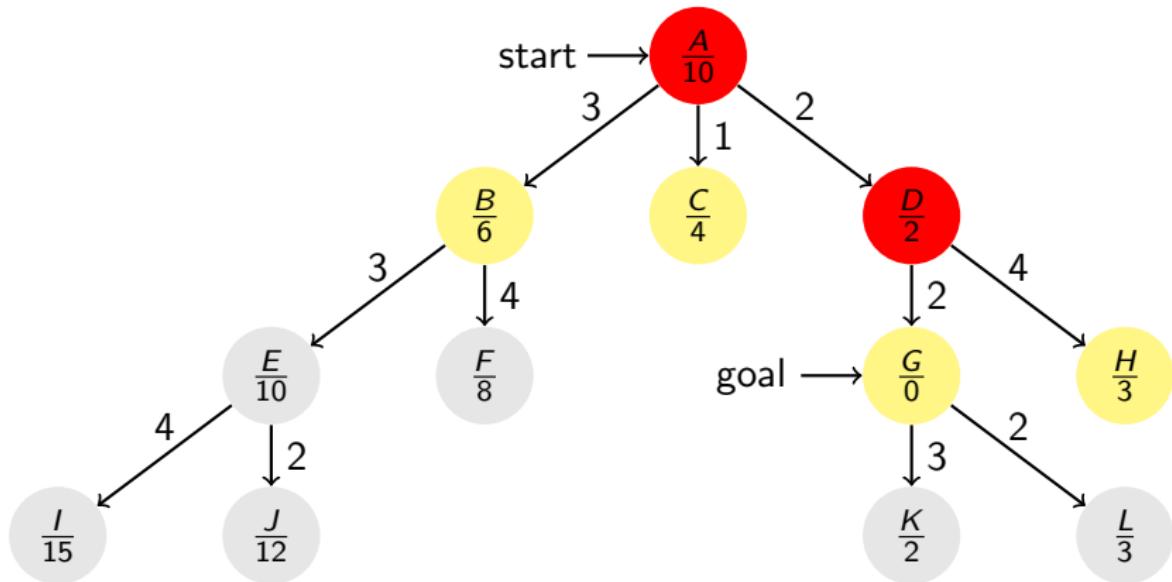
- $Q = \{A\}$
- $V = \{A\}$

Greedy (Best-First) Search: Step 2



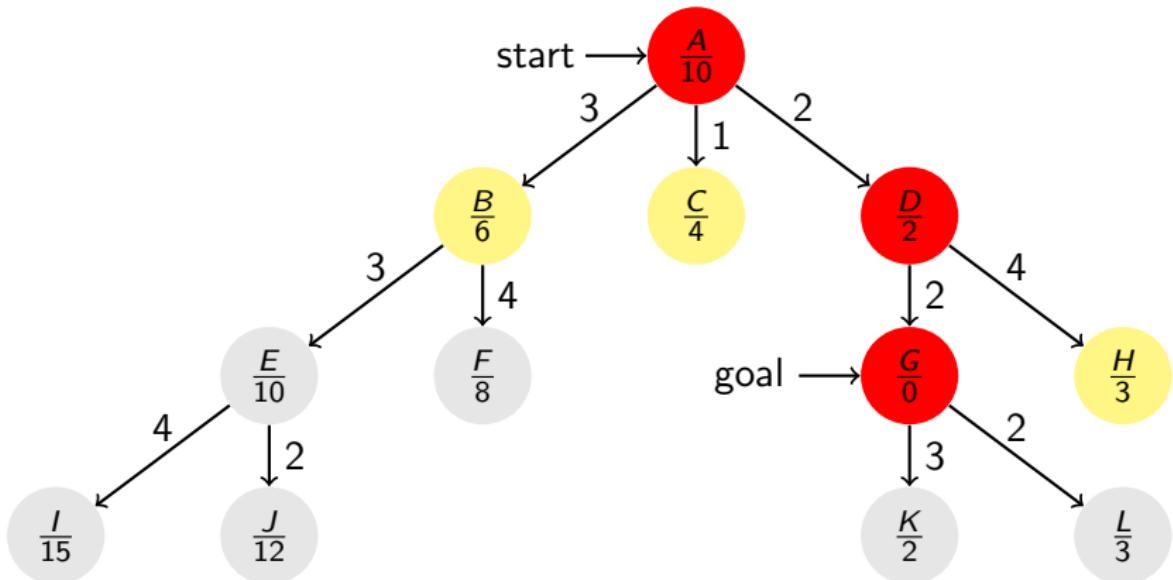
- $Q = \{B : 6, C : 4, D : 2\}$
- $\text{costToCome} = \{A, B, C, D\}$

Greedy (Best-First) Search: Step 3



- $Q = \{B : 6, C : 4, G : 0, H : 3\}$
- $\text{costToCome} = \{A, B, C, D, G, H\}$

Greedy (Best-First) Search: Step 4



- $Q = \{B : 6, C : 4, H : 3\}$
- $\text{costToCome} = \{A, B, C, D, G, H\}$
- Return $\{A, D, G\}$

Greedy (Best-First) Search

- Similar to DFS, keep exploring until a dead end
- DFS → Greedy, depth → heuristic function
- BFS → UCS, depth → uniform cost
- We know DFS + BFS → Iterative Deepening
- Greedy Search + UCS → ?

Outline

1 Shortest Path Problems

2 Uniform-Cost Search

3 Greedy Search

4 Optimal Search

- UCS is optimal, but not efficient
- Greedy search is not optimal, but sometimes efficient
- **Idea:** Utilize the cost from the start to a state, $c(s)$, and the heuristic function that estimates the cost from s to the goal, $h(s)$

$$f(s) = c(s) + h(s)$$

A Search

Algorithm 5: A Search

```
 $Q \leftarrow \{s_0\};$ 
 $c(s_0) = 0;$ 
 $\text{Parent}(s_0) \leftarrow \text{null};$ 
while  $Q$  is not empty do
    Take the minimum  $f(s)$  element  $s$  from  $Q$ ;
    if  $s \in \mathcal{S}_{goal}$  then
         $\quad \text{return } \sigma;$ 
    for all  $s, s'$  such that  $s \xrightarrow{a} s'$  do
         $\quad \text{newCostToCome} \leftarrow c(s) + w(s, a, s');$ 
        if  $\text{newCostToCome} < c(s')$  then
             $\quad \quad c(s') \leftarrow \text{newCostToCome};$ 
             $\quad \quad \text{Parent}(s') \leftarrow s;$ 
             $\quad \quad \text{update } s' \text{ in } Q;$ 
    return failure;
```

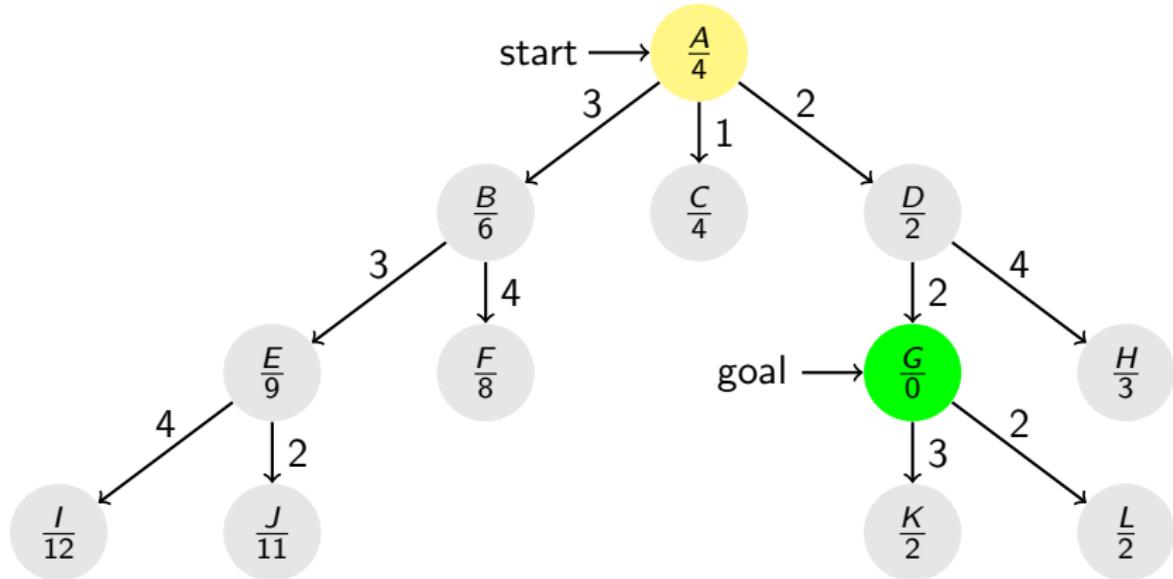

A* Search

- A search is complete, but not optimal
 - $h = 0$, same as UCS
 - h is too large for some “good” states, then it steers the search away
 - balance: h is informative, but not misleading
- Idea: Choose an **admissible** heuristic, such that $h(s) \leq h^*(s)$ for all states s , where $h^*(s)$ is the “true” optimal cost from s to the goal

A*

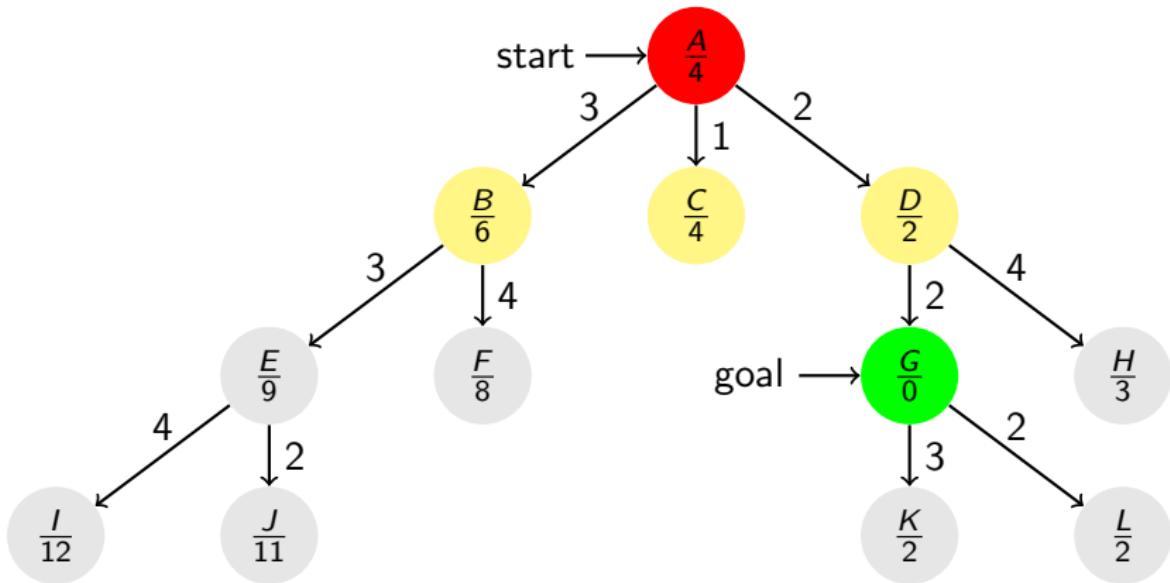
The A search with an admissible heuristic is called A*, and is optimal.

A* Search: Step 1



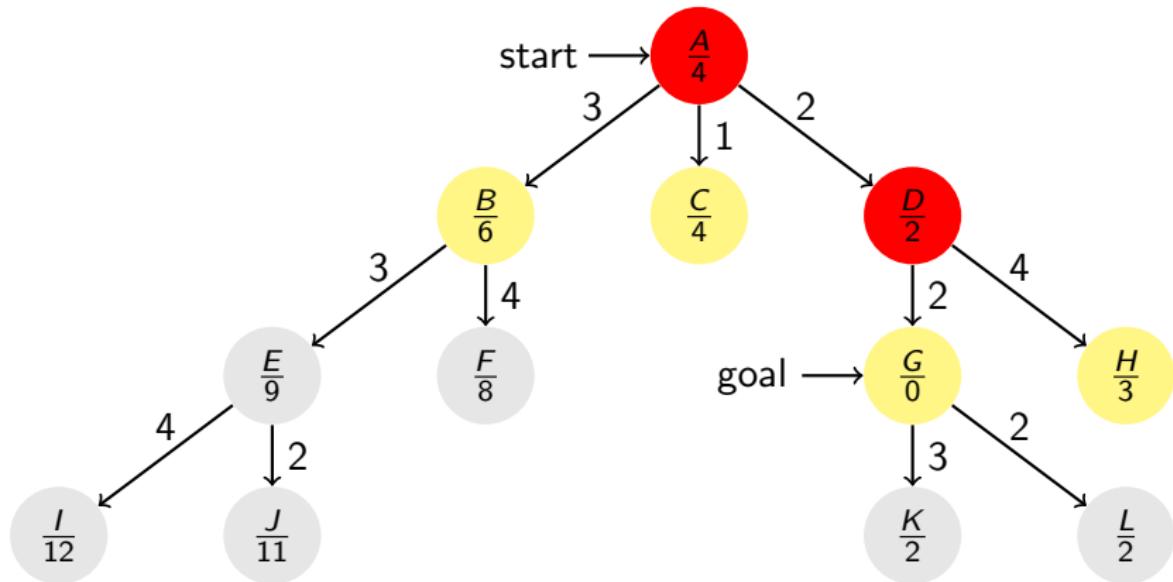
- $Q = \{A(0 + 4)\}$
- $\text{costToCome} = \{A : 0\}$

A* Search: Step 2



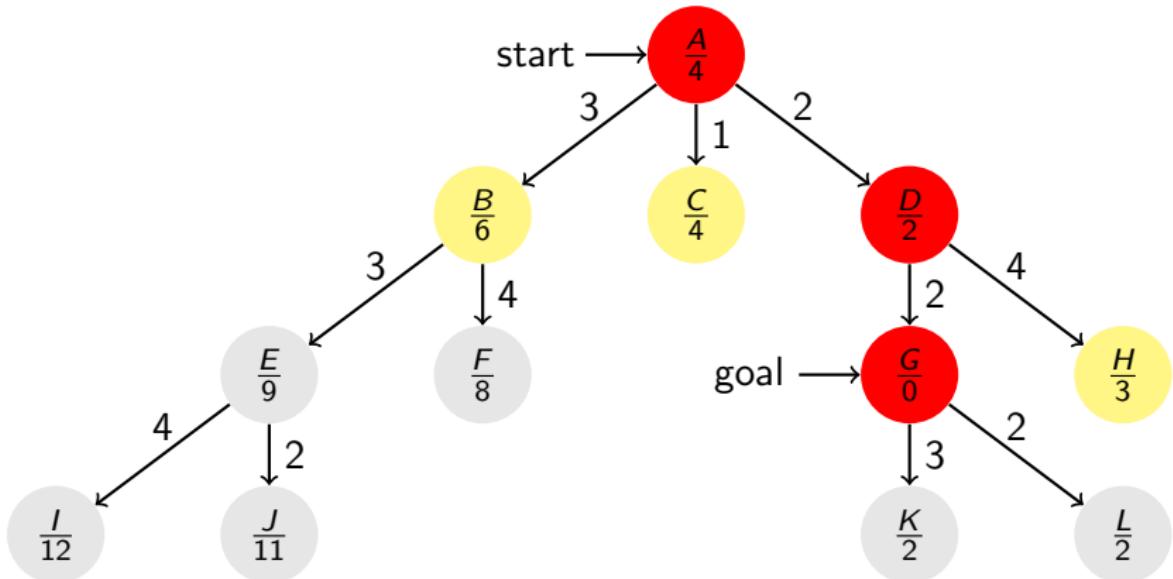
- $Q = \{B(3 + 6), C(1 + 4), D(2 + 2)\}$
- $\text{costToCome} = \{A : 0, B : 3, C : 1, D : 2\}$

A* Search: Step 3



- $Q = \{B(3 + 6), C(1 + 4), G(4 + 0), H(6 + 3)\}$
- $\text{costToCome} = \{A : 0, B : 3, C : 1, D : 2, G : 4, H : 6\}$

A* Search: Step 4



- $Q = \{B(3 + 6), C(1 + 4), H(6 + 3)\}$
- $\text{costToCome} = \{A : 0, B : 3, C : 1, D : 2, G : 4, H : 6\}$
- Return $\{A, D, G\}$

Proof of A* Optimality

1. Assume that A* returns a path σ , but $cost(\sigma) > cost(\sigma^*)$
2. Find the first state on the optimal path σ^* but not on σ , call it s
3. $f(s) > cost(\sigma)$, otherwise we would have included s in σ
4. $f(s) = c(s) + h(s)$ by definition
5. $= c^*(s) + h(s)$ because s is on the optimal path
6. $\leq c^*(s) + h^*(s)$ because h is admissible
7. $= f^*(s) = cost(\sigma^*)$
8. Hence $cost(\sigma^*) \geq f(s) > cost(\sigma)$, which is a contradiction

- A heuristic that **never overestimates** the costToGo
- $h = 0$, always works, but not informative
- $h = \text{distance}(v, g)$, when the vertices are physical locations
- $h = \|v - g\|_p$, when the vertices are points in a normed vector space

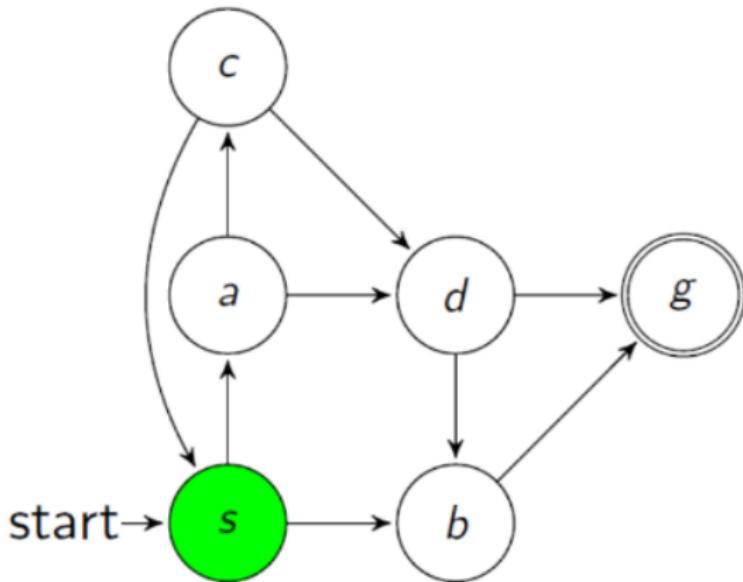
Consistent Heuristics

- Consistency (triangle inequality): $\forall s \xrightarrow{a} s', h(s) \leq w(s, a, s') + h(s')$
- $f(s) = c(s) + h(s)$ is non-decreasing along paths

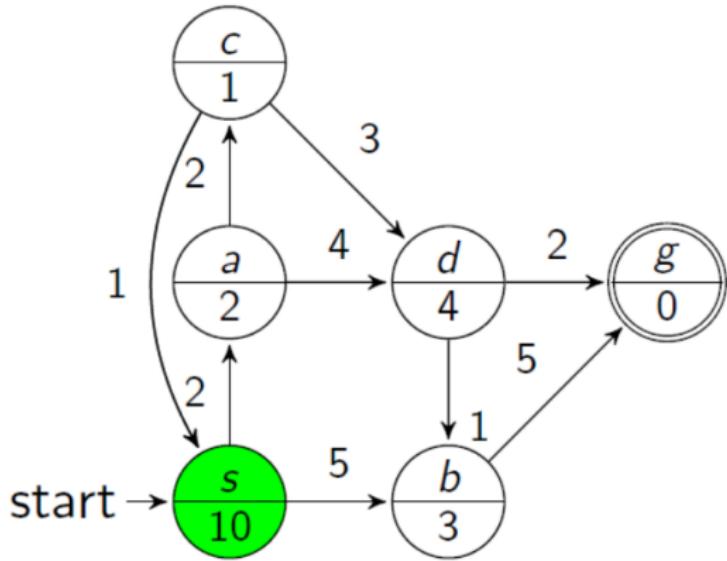
$$f(s') = c(s') + h(s') = c(s) + w(s, a, s') + h(s') \geq c(s) + h(s) = f(s)$$

- The first path found to a state is also the optimal path

Exercises



Exercises



8-puzzle Problem

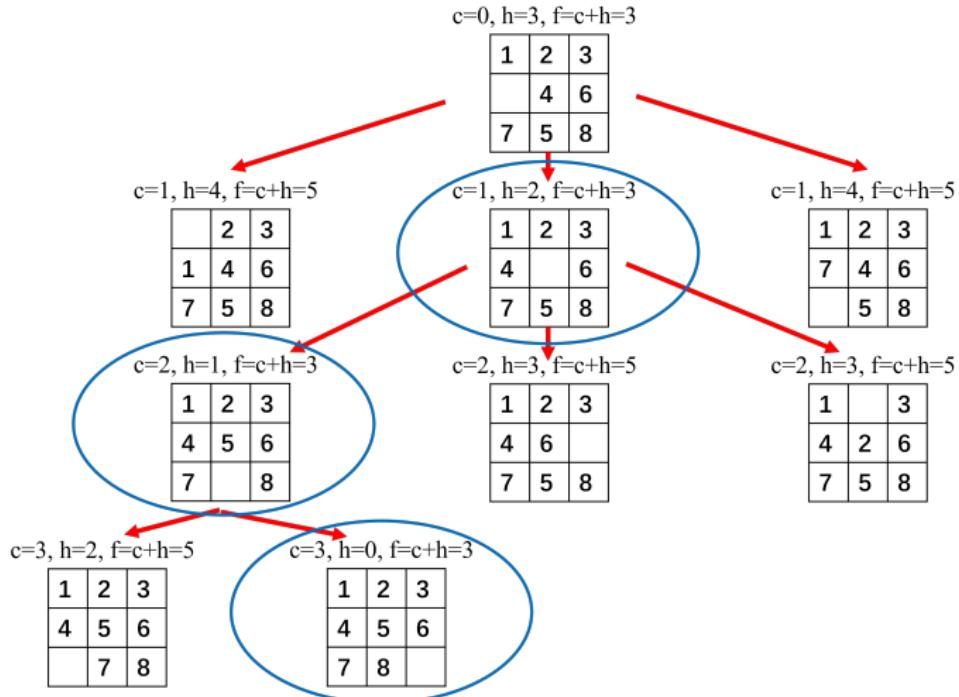
1	2	3
	4	6
7	5	8

Initial State

1	2	3
4	5	6
7	8	

Goal State

8-puzzle Problem



1 Shortest Path Problems

2 Uniform-Cost Search

3 Greedy Search

4 Optimal Search