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Complete Algorithms for Motion Planning

Get from point A to point B avoiding obstacles
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Complete Algorithms for Motion Planning

Motion Planning Problem

Consider a dynamical control system defined by an ODE of the form

dx/dt = f (x , u), x(0) = xinit ,

where x is the state, u is the control. Given an obstacle set Xobs ⊂ Rd , and a
goal set Xgoal ⊂ Rd , a complete algorithm for motion planning must find, if it
exists, a control signal u such that the solution satisfies x(t) /∈ Xobs ∀t ∈ R+, and
x(t) ∈ Xgoal ∀t > T for some finite T ≥ 0, or return failure if no such control
signal exists. The algorithm must terminate in finite time.

Basic problem in robotics (and intelligent life in general).

Provably very hard: a basic version (the Generalized Piano Mover’s problem)
is known to be PSPACE-hard [Reif, ’79].
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Motion Planning in Practice

Many techniques have been proposed to solve motion planning problems, e.g.,

Algebraic planners: Explicit representation of obstacles.
Use complicated algebra (visibility computations or
projections) to find the path. Complete, but impractical.

Discretization + graph search: Analytic/grid-based
methods do not scale well to high dimensions. Graph
search methods (A*, D*, etc.) can be sensitive to
graph size. Resolution complete.

Potential fields/navigation functions: Virtual attractive
forces towards the goal, repulsive forces away from the
obstacles. No completeness guarantees, unless
“navigation functions” are available - very hard to
compute in general.

These algorithms achieve tractability by foregoing completeness altogether, or
achieving weaker forms of it, e.g., resolution completeness.
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Sampling-based Algorithms

A class of motion planning algorithms that has been very successful in
practice is based on (batch or incremental) sampling methods: solutions are
computed based on samples drawn from some dense sequence (stochastic or
deterministic).

Sampling-based algorithms retain a weaker form of completeness, e.g.,
probabilistic or resolution completeness.

Probabilistic RoadMaps (PRM) [Kavraki & Latombe, 1994] was the first
planner to demonstrate the ability to solve practical planning problems “in
high dimensions” ( > 4-5 dimensions!).
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Probabilistic RoadMaps (PRM)

Mainly geared towards “multi-query” motion planning problems.

Idea: build (offline) a graph (i.e., the roadmap) representing the
“connectivity” of the environment; use this roadmap to figure out paths
quickly at run time.

Offline pre-processing phase:

Sample n points from Xfree = [0, 1]d \ Xobs .
Try to connect these points using a fast “local planner” (e.g., ignore
obstacles).
If connection is successful, add an edge between the points.

At run time:

Connect the start and end goal to the closest nodes in the roadmap.
Find a (shortest) path on the roadmap.
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Probabilistic RoadMap (PRM) Algorithm: Step 1

Simplified PRM: connections attempted to all vertices within distance r .

“Real” PRM: connections attempted in increasing order of distance, only to
other connected components in the graph.
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Probabilistic RoadMap (PRM) Algorithm: Step 2

Simplified PRM: connections attempted to all vertices within distance r .

“Real” PRM: connections attempted in increasing order of distance, only to
other connected components in the graph.

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Oct 2024 10 / 82



Probabilistic RoadMap (PRM) Algorithm: Step 3

Simplified PRM: connections attempted to all vertices within distance r .

“Real” PRM: connections attempted in increasing order of distance, only to
other connected components in the graph.
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Probabilistic RoadMap (PRM) Algorithm: Step 4

Simplified PRM: connections attempted to all vertices within distance r .

“Real” PRM: connections attempted in increasing order of distance, only to
other connected components in the graph.
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Probabilistic RoadMap (PRM) Algorithm: Step 5

Simplified PRM: connections attempted to all vertices within distance r .

“Real” PRM: connections attempted in increasing order of distance, only to
other connected components in the graph.
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Probabilistic RoadMap (PRM) Algorithm: Step 6

Simplified PRM: connections attempted to all vertices within distance r .

“Real” PRM: connections attempted in increasing order of distance, only to
other connected components in the graph.
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Probabilistic RoadMap (PRM) Algorithm: Step 7

Simplified PRM: connections attempted to all vertices within distance r .

“Real” PRM: connections attempted in increasing order of distance, only to
other connected components in the graph.
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Rapidly-exploring Random Trees

Introduced by LaValle and Kuffner in 1998.

Appropriate for single-query planning problems.

Idea: build (online) a tree, exploring the region of the state space that can
be reached from the initial condition.

At each step: sample one point from Xfree , and try to connect it to the
closest vertex in the tree.

Very effective in practice, “Voronoi bias”.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 1

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 2

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 3

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 4

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 5

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 6

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 7

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 8

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 9

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 10

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 11

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 12

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 13

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 14

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 15

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 16

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 17

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 18

Connections attempted to the nearest neighbor only.

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Oct 2024 34 / 82



Rapidly-exploring Random Tree (RRT) Algorithm: Step 19

Connections attempted to the nearest neighbor only.
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Rapidly-exploring Random Tree (RRT) Algorithm: Step 20

Connections attempted to the nearest neighbor only.
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Under The Hood, Part I: The Components

Necessary components to implement PRM/RRT and similar algorithms:

A generator of dense point sequences on X .

A measure of distance between two points on X .

An algorithm to find nearest neighbors in a point set.

A “collision” checker.

A “local planner”. [Steering function, ignoring obstacles].

A shortest path algorithm on graphs [Dijkstra, A*].
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Distance Functions and Metrics

Conditions for attempting the connecting between samples often rely on a
notion of “distance” between points. A standard notion of “distance” is that
of metric.

A metric ρ on a space X is a function ρ : X × X → R≥0, (a, b)→ ρ(a, b)
that satisfies the following properties:

ρ(a, b) = 0 if and only if a = b.

ρ(a, b) ≥ 0.

Symmetry: ρ(a, b) = ρ(b, a), for any a, b ∈ X .

Triangle inequality: ρ(a, b) + ρ(b, c) ≥ ρ(a, c), for any a, b, c ∈ X .

A space X with a metric is called a metric space.
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Lp Metrics

A commonly used family of metrics on Rn is given by the Lp metrics,

ρ(x , x ′) =
( n∑

i=1

|xi − x ′i |p
)1/p

.

Standard choice include:

Manhattan Metric L1: in the plane, this reminds of the distance
traveled by a car driving along axis-aligned city blocks.

Euclidean Metric L2: this is the usual notion of “distance” in Rn.

Infinity Metric L∞: ρ(x , x ′) = maxni=1{|xi − x ′i |}.
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More General Distance Functions

While metrics are a standard notion of functions, there are other functions
that may be more appropriate for motion planning.

For example, in many cases of interest “distance” functions in robotics are
not symmetric (these are some times called “quasimetrics”):

The “distance” between two points on a mountain will feel different
between moving uphill vs. downhill! Same for the distance between
two points in a wind field/river current/etc.

The driving distance between two points in Manhattan may depend on
directional constraints like one-way streets.

The length of the shortest path between two points is not symmetric
for a Dubins vehicle (which can only move forwards); it is symmetric
for a Reeds-Shepp vehicle (which can also reverse).

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Oct 2024 40 / 82



Distance Functions for Sampling-based Motion Planning

It turns out that the main requirement for a “distance function” to be useful
for sampling-based motion planning is one of monotonicity along paths.

This is an assumption that is typically satisfied by functions measuring some
“effort” to move between two states (with or without obstacles), e.g.,

optimal cost-to-go functions

navigation functions, etc.

Choosing a distance function appropriately is particularly important when
dealing with systems with differential constraints.
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Dense Sequences

A key assumption is that the sequence of sampled points be dense in X .

A point sequence s on X is a mapping s : N→ X , i → si . For any n ∈ N, it
generates a point set Sn = {si :, i = 1, ..., n}.

The sequence s is dense on X if, for any open set O ⊂ X , there exists some
n̂ such that Sn contains at least one point in O, for all n > n̂.

In the case in which the sequence is stochastic (i.e., each si is a random
variable), then the sequence s is dense on X if for any open set O,

lim
n→∞

Pr [O ∩ Sn = ∅] = 0.

Another way to say that s is dense on X is that cl(S∞) = X .
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Uniform Random Numbers on [0, 1)

The sequence obtained by setting si = rand(1), i.e., a sequence of
(pseudo-)random number uniformly and independently sampled from [0, 1)
(as in Matlab), is dense on [0, 1].

To see this, take any open interval O = (a, b) ⊂ [0, 1), and let ε = b − a.
The probability that si is not in O is (1− ε). The probability that none of
the n points in Sn is in O is (1− ε)n, which goes to 0 as n→∞.

The same argument extends to higher dimensions.

Note: In sampling-based algorithms, “randomness” is most often just a
convenient way to get dense sequences. Some beautiful/elegant theoretical
results are also available to prove certain facts. But sample sequences do
not typically need to be “random”!
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The van der Corput Sequence

We want to generate a sequence of, 16 points that is “as dense as possible”
on X = [0, 1] / ∼(i.e., the interval [0, 1] where we identify 0 and 1).

An approach to “spread” points on X would be to recursively bisect (one
of) the largest “empty” intervals.

There is a very simple way to do that:

Write the numbers 0, 1/16, ..., 15/16 in binary notation.

Flip the binary figures left/right.

The sequence thus obtained achieves the desired objective!

The same sequence can be extended to any desired number of samples!
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The van der Corput Sequence
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Low-Dispersion Sampling

How do we extend the notion of “uniformity”
to deterministic sequences?

Idea: measure the biggest empty “ball” in X
and try to make it as small as possible.

The dispersion δ of a pointset P ∈ X induced
by a distance function ρ is defined as

δρ(P) = sup
x∈X

{
min
p∈P
{ρ(x , p)}

}
.

Lower dispersion means that the points are
nicely dispersed. Thus, more dispersion is bad,
which is counterintuitive.

Reducing the dispersion means reducing the
radius of the largest empty ball.
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The Halton Sequence

The Halton sequence can be seen as a generalization of the van der Corput
sequence, and is useful to generate low discrepancy sequences in higher
dimensions.

Let dk(n), k ∈ N be the coefficients of the expression of i in base b ∈ N, i.e.,

i =
∞∑
k=0

dk(n)bk .

The generalized van der Corput sequence is obtained by reversing the order
of the digits, and moving the decimal point, i.e.,

s
(b)
i =

∞∑
k=0

dk(n)b−k−1.

The Halton sequence on [0, 1]d is obtained by choosing d co-prime numbers
(e.g., the first d primes) as bases, and setting

hi = (s
(b1)
i , s

(b2)
i , ..., s

(bd )
i ).
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Halton Sequence Example: Step 0
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Halton Sequence Example: Step 1

(12 ,
1
3)
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Halton Sequence Example: Step 2

(14 ,
2
3)
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Halton Sequence Example: Step 3

(34 ,
1
9)
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Halton Sequence Example: Step 4

(18 ,
4
9)
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Halton Sequence Example: Step 5

(58 ,
7
9)
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Halton Sequence Example: Step 6

(38 ,
2
9)
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Halton Sequence Example: Step 7

(78 ,
5
9)
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Halton Sequence Example: Step 8

( 1
16 ,

8
9)
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Halton Sequence Example: Step N
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Under The Hood, Part I: The Components

Necessary components to implement PRM/RRT and similar algorithms:

A generator of dense point sequences on X .

A measure of distance between two points on X .

An algorithm to find nearest neighbors in a point set.

A “collision” checker.

A “local planner”. [Steering function, ignoring obstacles].

A shortest path algorithm on graphs [Dijkstra, A*].
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Nearest-Neighbor Search

Sampling-based algorithms typically require looking for the nearest point
(RRT), or all points within a certain radius (simple PRM).

Computing distances to all points requires linear time in the size of the tree
or roadmap - for each new point. So the complexity of building a
PRM/RRT would grow as n2. This is often too slow.

A fast algorithm for looking for nearest neighbor is essential for good
performance.

k-d trees are a data structure that allows looking for nearest neighbors in
log n time...
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k-d tree Construction (batch): Step 1

Each node of the tree is associated to a point in Rd , and a hyperplane
splitting the remaining points into two groups.

Points are recursively split into two, along the direction of the axes, cycling
at each level of the tree.

In order to keep the tree balanced, pick the median point in the split
direction.

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Oct 2024 60 / 82



k-d tree Construction (batch): Step 2

Each node of the tree is associated to a point in Rd , and a hyperplane
splitting the remaining points into two groups.

Points are recursively split into two, along the direction of the axes, cycling
at each level of the tree.

In order to keep the tree balanced, pick the median point in the split
direction.
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k-d tree Construction (batch): Step 3

Each node of the tree is associated to a point in Rd , and a hyperplane
splitting the remaining points into two groups.

Points are recursively split into two, along the direction of the axes, cycling
at each level of the tree.

In order to keep the tree balanced, pick the median point in the split
direction.
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k-d tree Construction (batch): Step 4

Each node of the tree is associated to a point in Rd , and a hyperplane
splitting the remaining points into two groups.

Points are recursively split into two, along the direction of the axes, cycling
at each level of the tree.

In order to keep the tree balanced, pick the median point in the split
direction.
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k-d tree Construction (batch): Step 5

Each node of the tree is associated to a point in Rd , and a hyperplane
splitting the remaining points into two groups.

Points are recursively split into two, along the direction of the axes, cycling
at each level of the tree.

In order to keep the tree balanced, pick the median point in the split
direction.
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k-d tree Construction (batch): Step 6

Each node of the tree is associated to a point in Rd , and a hyperplane
splitting the remaining points into two groups.

Points are recursively split into two, along the direction of the axes, cycling
at each level of the tree.

In order to keep the tree balanced, pick the median point in the split
direction.
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k-d tree Construction (batch): Step 7

Each node of the tree is associated to a point in Rd , and a hyperplane
splitting the remaining points into two groups.

Points are recursively split into two, along the direction of the axes, cycling
at each level of the tree.

In order to keep the tree balanced, pick the median point in the split
direction.
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k-d tree Construction (batch): Step 8

Each node of the tree is associated to a point in Rd , and a hyperplane
splitting the remaining points into two groups.

Points are recursively split into two, along the direction of the axes, cycling
at each level of the tree.

In order to keep the tree balanced, pick the median point in the split
direction.
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k-d tree Construction (batch): Step 9

Each node of the tree is associated to a point in Rd , and a hyperplane
splitting the remaining points into two groups.

Points are recursively split into two, along the direction of the axes, cycling
at each level of the tree.

In order to keep the tree balanced, pick the median point in the split
direction.
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k-d tree Construction (batch): Step 10

Each node of the tree is associated to a point in Rd , and a hyperplane
splitting the remaining points into two groups.

Points are recursively split into two, along the direction of the axes, cycling
at each level of the tree.

In order to keep the tree balanced, pick the median point in the split
direction.
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k-d tree Construction (batch): Step 11

Each node of the tree is associated to a point in Rd , and a hyperplane
splitting the remaining points into two groups.

Points are recursively split into two, along the direction of the axes, cycling
at each level of the tree.

In order to keep the tree balanced, pick the median point in the split
direction.
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Nearest Neighbor Search on A k-d Tree

Proceed down the tree as if x was a new point to add.

When a leaf node is reached, the distance (squared) is computed and stored
as current nearest.

Sibling are searched if distance (squared) to the split is smaller than the
current nearest.

Otherwise the search moves up the tree, updating current nearest at parent
nodes as appropriate.
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Nearest Neighbor Search on A k-d Tree
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Nearest Neighbor Search on A k-d Tree

Proceed down the tree as if x was a new point to add.

When a leaf node is reached, the distance (squared) is computed and stored
as current nearest.

Sibling are searched if distance (squared) to the split is smaller than the
current nearest.

Otherwise the search moves up the tree, updating current nearest at parent
nodes as appropriate.
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Nearest Neighbor Search Complexity

Assuming that the k-d tree is balanced,

Inserting a new point takes O(log n) time.
A nearest-neighbor query takes O(log n) time.

There are algorithms to maintain the tree approximately balanced with
online/random insertions.

Otherwise, it may be necessary to periodically rebalance the tree.
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Collision Checking

Collision checking is typically the primary
bottleneck in sampling based motion planning.

It is also usually implemented as a black box
routine.

However, we can augment the data structure
with results of the collision query — and
reduce the frequency of collision checks!
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Efficient Collision Checking via Safety Certificates

Collision-checked nodes store “safety certificates” defined by (a lower bound
on) the distance to the nearest obstacle. Subsequent nodes within a
certificate can forgo collision checking.

Certificates (blue discs) asymptotically cover the space as graph size
increases toward infinity. The ratio of collision checks versus graph size
(nodes) approaches zero in the limit as graph size approaches infinity.

Asymptotic complexity is driven by nearest-neighbor searches — NOT
collision checks!
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Summary and Key Learning Objectives

Introduced two of the main sampling-based algorithms, PRM
(multiple-query) and RRT (single-query).

Discussed the main components necessary to implement a sampling-based
motion planning algorithms, namely:

Notions of distance: metrics, quasimetrics, cost-to-go functions.
Dense point sequences: uniform random sequences, van der Corput and
Halton sequences.
Nearest neighbor search algorithms and data structures (k-d tree).
Please do not underestimate this.
Discussed safety certificates to reduce the burden of collision checking.

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Oct 2024 81 / 82



Q & A

1 Sampling-based Methods
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