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RRT Algorithm

The RRT algorithm has been shown to be probabilistically complete.

The probability of success (if the problem is feasible) goes to 1 exponentially
fast , if the environment satisfies certain “good visibility” conditions.

Algorithm 1: RRT

V ← {xinit}; E ← ∅;
forall i = 1, ..., n do

xrand ← SampleFreei ;
xnearest ← Nearest(G = (V ,E ), xrand);
xnew ← Steer(xnearest , xrand);
if CollisonFree(xnearest , xnew ) then

V ← V ∪ {xnew};
E ← E ∪ {(xnearest , xnew )};

return G = (V ,E );
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RRTs and Optimality

RRTs are great at finding feasible trajectories quickly...

However, RRTs are terrible at finding good trajectories, regardless of the
obstacle configuration!
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RRT* - Step 1

The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - Step 2

The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - Step 3

The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - Step 4

The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - Step 5

The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - Step 6

The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - Step 7

The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - Step 8

The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - A Tree Version of The RRG: Step 9

The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* Algorithm

Algorithm 2: RRT*

V ← {xinit}; E ← ∅; G = (V ,E);
forall i = 1, ..., n do

xrand ← SampleFreei ; xnearest ← Nearest(G , xrand); xnew ← Steer(xnearest , xrand);
if CollisonFree(xnearest , xnew ) then

Xnear ← Near(G , xnew ,min{γRRG (log(card V )/card V )1/d , η});
V ← V ∪ {xnew};
xmin ← xnearest ; cmin ← Cost(xnearest) + c(Line(xnearest , xnew ));
forall xnear ∈ Xnear do

if CollFree(xnear , xnew ) & Cost(xnear ) + c(Line(xnear , xnew )) < cmin then
xmin ← xnear ; cmin ← Cost(xnear ) + c(Line(xnear , xnew ));

E ← E ∪ {(xmin, xnew )};
forall xnear ∈ Xnear do

if CollFree(xnew , xnear ) & Cost(xnew ) + c(Line(xnew , xnear )) < Cost(xnear )
then

xparent ← Parent(xnear );
E ← (E \ {(xparent , xnear )}) ∪ {(xnew , xnear )};

return G = (V ,E);
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RRT* Experiment Results
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Smoothing

The axis-aligned motions of a grid planner and the randomized
motions of sampling planners may lead to jerky motion of a robot.

Search globally for a solution, then post-process the resulting motion
to make it smoother.

Nonlinear Optimization: The initial motion must be converted to a
parametrized representation of the controls. The following cost
function

J =
1

2
u̇T (t)u̇(t)dt,

penalizes rapidly changing controls.

Subdivide and Reconnect: A local planner can be used to attempt a
connection between two distant points on a path.
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Bézier Curve

A Bézier curve is a parametric curve used in computer graphics and
robotics.

A set of discrete ”control points” defines a smooth, continuous curve
by means of a formula.

https://en.wikipedia.org/wiki/Bezier curve
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Bézier Curve

A Bézier curve is defined by a set of control points P0 through Pn,
where n is called the order of the curve (n = 1 for linear, 2 for
quadratic, 3 for cubic, etc.).

The first and last control points are always the endpoints of the
curve; however, the intermediate control points generally do not lie on
the curve.

The sums in the following sections are to be understood as affine
combinations – that is, the coefficients sum to 1.
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Linear Bézier Curve

Given distinct points P0 and P1, a linear Bézier curve is simply a line
between those two points. The curve is given by

B(t) = P0 + t(P1 − P0) = (1− t)P0 + tP1, 0 ≤ t ≤ 1.

It is equivalent to linear interpolation. The quantity P1 − P0

represents the displacement vector from the start point to the end
point.
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Quadratic Bézier Curve

A quadratic Bézier curve is the path traced by the function B(t),
given points P0, P1, and P2,

B(t) = (1− t)[(1− t)P0 + tP1] + t[(1− t)P1 + tP2], 0 ≤ t ≤ 1,

which can be interpreted as the linear interpolant of corresponding
points on the linear Bézier curves from P0 to P1 and from P1 to P2

respectively.

Rearranging the preceding equation yields:

B(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2, 0 ≤ t ≤ 1,
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Quadratic Bézier Curve

Which immediately gives the derivative of the Bézier curve with
respect to t:

B ′(t) = 2(1− t)[P1 − P0] + 2t[P2 − P1], 0 ≤ t ≤ 1,

As t increases from 0 to 1, the curve departs from P0 in the direction
of P1, then bends to arrive at P2 from the direction of P1.
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Quadratic Bézier Curve

As t increases from 0 to 1, the curve departs from P0 in the direction
of P1, then bends to arrive at P2 from the direction of P1.

Can be interpreted as the linear interpolant of corresponding points on
the linear Bézier curves from P0 to P1 and from P1 to P2 respectively.
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Cubic Bézier Curve

The explicit form of the cubic Bézier curve is:

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3, 0 ≤ t ≤ 1.

Any series of 4 distinct points can be converted to a cubic Bézier
curve that goes through all 4 points in order.

Given the starting and ending point of some cubic Bézier curve, and
the points along the curve corresponding to t = 1/3 and t = 2/3, the
control points for the original Bézier curve can be recovered.
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Cubic Bézier Curve

The derivative of the cubic Bézier curve with respect to t is

B ′(t) = 3(1−t)2(P1−P0)+6(1−t)t(P2−P1)+3t2(P3−P2), 0 ≤ t ≤ 1.

Four points P0,P1,P2 and P3 in the plane or in higher-dimensional
space define a cubic Bézier curve.

The curve starts at P0 going toward P1 and arrives at P3 coming
from the direction of P2. Usually, it will not pass through P1 or P2;
these points are only there to provide directional information.

The distance between P1 and P2 determines “how far” and “how
fast” the curve moves towards P1 before turning towards P2.
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Cubic Bézier Curve
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Cubic Bézier Curve

For cubic curves one can construct intermediate points Q0, Q1, and
Q2 that describe linear Bézier curves, and points R0 and R1 that
describe quadratic Bézier curves:
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Fourth-order Bézier Curve
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Fifth-order Bézier Curve
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Elastic Band Based RRT

Wang, J., Meng, M. Q. H., & Khatib, O. (2020). EB-RRT: Optimal motion planning for mobile robots. IEEE
Transactions on Automation Science and Engineering, 17(4), 2063-2073.
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Elastic Band Based RRT
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Elastic Band Based RRT
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Elastic Band Based RRT

Obstacle constraints and acceleration constraints serve as the external
repulsive force.
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Covariant Hamiltonian Optimization for Motion Planning

Gradient optimization techniques for efficient motion planning.

An obstacle term fobs , which measures the cost of being near
obstacles; and a prior term fprior , which measures dynamical
quantities of the robot such as smoothness and acceleration. The
cost of a trajectory is

U(ξ) = fprior (ξ) + fobs(ξ).

fprior is a simple quadratic form

fprior (ξ) =
1

2
ξTAξ + ξTb + c .

Ratliff, N., Zucker, M., Bagnell, J. A., & Srinivasa, S. (2009, May). CHOMP: Gradient optimization techniques for
efficient motion planning. In 2009 IEEE international conference on robotics and automation (pp. 489-494). IEEE.
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Covariant Hamiltonian Optimization for Motion Planning

Assume the distance from robot to the nearest obstacle is greater
than ε ≥ 0. The distance from a point x ∈ R3 to the boundary of the
nearest obstacle is d(x).

c(x) penalizes points of robots for being near obstacles

c(x) = max(ε− d(x), 0).

A smoother version for the potential function

c(x) =


−d(x) + 1

2ξ, d(x) < 0
1
2ξ (d(x)− ε)2, 0 ≤ d(x) ≤ ε
0, otherwise
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Covariant Hamiltonian Optimization for Motion Planning

The obstacle objective is defined as

fobs [q] =

∫ 1

0

∫
B
c

(
x(q(t), u)

)∣∣∣∣∣∣∣∣ ddt x(q(t), u)

∣∣∣∣∣∣∣∣dudt.
Recall the cost of a trajectory U , we can approximate it using a
first-order Taylor expansion:

U(ξ) ≈ U(ξk) + gT
k (ξ − ξk), gk = ∇U(ξk).

The update rule is

ξk+1 = arg
ξ

min

{
U(ξk) + gT

k (ξ − ξk) +
λ

2
||ξ − ξk ||2M

}
.
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Exercise

Consider a Quadratic Bézier Curve

B(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2, 0 ≤ t ≤ 1.

Given control points P0 = (1, 2),P1 = (2, 4),P2 = (4, 1), write out
the explicit parametric equations for the Bézier Curve in the
xy−plane.
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Solution

x = t2 + 2t + 1

y = −5t2 + 4t + 2
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