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RRT Algorithm

@ The RRT algorithm has been shown to be probabilistically complete.

@ The probability of success (if the problem is feasible) goes to 1 exponentially
fast , if the environment satisfies certain “good visibility” conditions.

Algorithm 1: RRT

V ¢ {Xinie }; E < 0;
forall i=1,...,ndo
Xrand <— SampleFree;;
Xnearest < Nearest(G = (V, E), Xrand);
Xnew Steer(Xnearesta Xrand);
if CollisonFree(Xnearest; Xnew ) then

L V — VU {Xpew };

E+EU {(Xnearestyxnew)};

return G = (V, E);
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RRTs and Optimality

@ RRTs are great at finding feasible trajectories quickly...

@ However, RRTs are terrible at finding good trajectories, regardless of the
obstacle configuration!

RRT, ENR= 0.041 RRTJ, ENR=0.112 RRT*, ENR=0.017 RRT*J, ENR=0.041

Time = 254ms, Node (h) Time = 41ms, Node
= 2379. = 602. = 2007. = 403.

(e) Time = 165ms, Node (f) Time = 45ms, Node (g)
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RRT* - Step 1

@ The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - Step 2

@ The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - Step 3

@ The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - Step 4

@ The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - Step 5

@ The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - Step 6

@ The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - Step 7

@ The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - Step 8

@ The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* - A Tree Version of The RRG: Step 9

@ The RRT* algorithm maintains a tree structure by Choosing Parents, i.e.,
the optimal path to the new vertex, and Rewiring(eliminating “redundant”
edges), i.e., edges that would be part of a non-optimal path to a vertex.
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RRT* Algorithm

Algorithm 2: RRT*
V « {Xinit}; E <+ 0; G =(V,E);
forall i=1,...,ndo

Xrand <— SampleFreei; Xnearest <— NeareSt(G,Xrand); Xnew <— Steer(xnearestyxrand);
if CollisonFree(xnearest, Xnew ) then

Xnear < Near(G, Xnew, min{,rre (log(card V)/card V)¢ n});

V — VU {Xnew};

Xmin <= Xnearesty; Cmin < COSt(Xnearest) + C(Line(Xnearest, anw));

forall Xpear € Xpear do

L if CollFree(x,,ea,,x,,eW) & COSt(Xnear) + C(Line(xneamxnew)) < Cmin then

L Xmin <= Xnear; Cmin $— COSt(Xnear) + C(Line(Xneaanew));

E+—EU {(Xmimxnew)};
forall Xpear € Xpear do

if CollFree(Xnew, Xnear) & Cost(Xnew) + c(Line(Xnew, Xnear)) < COSt(Xnear)
then

L Xparent <~ Parent(xnear);
E + (E \ {(Xparent7 Xnear)}) U {(XI'IEW7 Xnear)};

return G = (V, E);
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RRT* Experiment Results
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@ The axis-aligned motions of a grid planner and the randomized
motions of sampling planners may lead to jerky motion of a robot.

@ Search globally for a solution, then post-process the resulting motion
to make it smoother.

@ Nonlinear Optimization: The initial motion must be converted to a
parametrized representation of the controls. The following cost
function

1
J==
2

penalizes rapidly changing controls.

o’ (t)a(t)dt,

@ Subdivide and Reconnect: A local planner can be used to attempt a
connection between two distant points on a path.
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Bézier Curve

o A Bézier curve is a parametric curve used in computer graphics and
robotics.

@ A set of discrete "control points” defines a smooth, continuous curve
by means of a formula.

P

e o
!

https://en.wikipedia.org/wiki/Bezier_curve

Jiankun WANG (SUSTech) botic Perception and Intelligence



Bézier Curve

@ A Bézier curve is defined by a set of control points Py through P,,
where n is called the order of the curve (n =1 for linear, 2 for
quadratic, 3 for cubic, etc.).

@ The first and last control points are always the endpoints of the
curve; however, the intermediate control points generally do not lie on
the curve.

@ The sums in the following sections are to be understood as affine
combinations — that is, the coefficients sum to 1.
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Linear Bézier Curve

@ Given distinct points Py and Pq, a linear Bézier curve is simply a line
between those two points. The curve is given by

B(t)=Py+t(PL—Py)=(1—t)Py+tP;, 0<t<L.

@ It is equivalent to linear interpolation. The quantity P; — Py
represents the displacement vector from the start point to the end
point.

eP,
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Quadratic Bézier Curve

@ A quadratic Bézier curve is the path traced by the function B(t),
given points Py, P1, and P,

Bt)=(1—-t)[(L—=t)Po+ tP1]+ t[(L —t)PL +tP2], 0<t<1,

which can be interpreted as the linear interpolant of corresponding
points on the linear Bézier curves from Py to P; and from P; to P»
respectively.

@ Rearranging the preceding equation yields:

B(t) = (1—t)?Po+2(1 — t)tP1 + 2P, 0<t <1,
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Quadratic Bézier Curve

@ Which immediately gives the derivative of the Bézier curve with
respect to t:

Bl(t) = 2(1 — t)[Pl — Po] + 2t[P2 — Pl], 0<t<l,

As t increases from 0 to 1, the curve departs from Py in the direction
of Py, then bends to arrive at P> from the direction of P;.

aF,
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Quadratic Bézier Curve

@ As t increases from 0 to 1, the curve departs from Py in the direction
of Py, then bends to arrive at P> from the direction of P;.

@ Can be interpreted as the linear interpolant of corresponding points on
the linear Bézier curves from Py to Py and from P; to P, respectively.

oP,
Q:
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Cubic Bézier Curve

@ The explicit form of the cubic Bézier curve is:
B(t) = (1—t)*Py+3(1 —t)*tPL+3(1 - t)t?Py + t3P;, 0<t <1

@ Any series of 4 distinct points can be converted to a cubic Bézier
curve that goes through all 4 points in order.

@ Given the starting and ending point of some cubic Bézier curve, and
the points along the curve corresponding to t = 1/3 and t = 2/3, the
control points for the original Bézier curve can be recovered.
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Cubic Bézier Curve

@ The derivative of the cubic Bézier curve with respect to t is
B'(t) = 3(1—t)*(P1—Po)+6(1—t)t(P,—P1)+3t*(P3—P2),0 < t < 1.

@ Four points Py, P1, P> and Ps in the plane or in higher-dimensional
space define a cubic Bézier curve.
@ The curve starts at Py going toward P; and arrives at P3 coming

from the direction of P,. Usually, it will not pass through P; or P»;
these points are only there to provide directional information.

@ The distance between P; and P, determines “how far” and “how
fast” the curve moves towards P; before turning towards P,.
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Cubic Bézier Curve

]
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Cubic Bézier Curve

@ For cubic curves one can construct intermediate points Qy, Q1, and
@ that describe linear Bézier curves, and points Ry and Ry that
describe quadratic Bézier curves:

oP, Q4 R, oP,
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Fourt er Bézier Curve

E

oP,

P t=0 0P,
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Fifth-order Bézier Curve
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Elastic Band Based RRT

O Time-based Node
01(to) A O Reconnected Node
/\ Obstacle Prediction

Yo 0y(ty+A0) §

X7

Wang, J., Meng, M. Q. H., & Khatib, O. (2020). EB-RRT: Optimal motion planning for mobile robots. IEEE
Transactions on Automation Science and Engineering, 17(4), 2063-2073.
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Elastic Band Based RRT
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Elastic Band Based RRT
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Elastic Band Based RRT

@ Obstacle constraints and acceleration constraints serve as the external
repulsive force.

— Oheu o — U — Opeu 6" — o

Xend

Ustart Xend
obstacle ’

Xstart Xstart
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Covariant Hamiltonian Optimization for Motion Planning

@ Gradient optimization techniques for efficient motion planning.

@ An obstacle term f,ps, which measures the cost of being near
obstacles; and a prior term f,jo-, which measures dynamical
quantities of the robot such as smoothness and acceleration. The
cost of a trajectory is

Z/{(f) = fprior(g) + fobs(g)'

@ fprior is @ simple quadratic form

foior(€) = 56T AE+€Tb 4 c.

Ratliff, N., Zucker, M., Bagnell, J. A., & Srinivasa, S. (2009, May). CHOMP: Gradient optimization techniques fol %
efficient motion planning. In 2009 IEEE international conference on robotics and automation (pp. 489-494). IEEE.
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Covariant Hamiltonian Optimization for Motion Planning

@ Assume the distance from robot to the nearest obstacle is greater

than € > 0. The distance from a point x € R3 to the boundary of the
nearest obstacle is d(x).

@ c(x) penalizes points of robots for being near obstacles
c(x) = max(e — d(x),0).
@ A smoother version for the potential function
—d(x)+ 3£ d(x) <0
€(x) = H(d(x) — . 0= d(x) < e

0, otherwise

c(x)

0
d(x)
Jiankun WANG (SUSTech)
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Covariant Hamiltonian Optimization for Motion Planning

@ The obstacle objective is defined as

tucddl = [ [ e(xta(0.0)) [ Sxtate).

@ Recall the cost of a trajectory U, we can approximate it using a
first-order Taylor expansion:

UE) ~ UE) + & (€ — &), gr = VU(E).

dudt.

@ The update rule is

A
€1 = arg min {u(fk) +ed (€ &)+ 5llE - fk||%4}-
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Exercise

@ Consider a Quadratic Bézier Curve
B(t) = (1 —t)?Py +2(1 — t)tPy + 2P, 0<t<1.

Given control points Py = (1,2), P1 = (2,4), P, = (4,1), write out
the explicit parametric equations for the Bézier Curve in the
xy—plane.
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Solution

e x=t>+2t+1

o y=—5t24+4t+2
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