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Example

Handwritten Digit Recognition

Chris Bishop, Pattern Recognition and Machine Learning.
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Polynomial Curve Fitting

y(x ,w) = w0 + w1x + w2x
2 + . . .+ wMxM =

M∑
j=0

wjx
j
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Sum-of-Squares Error Function

E (w) =
1

2

N∑
n=1

{y (xn,w)− tn}2
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0th Order Polynomial
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1st Order Polynomial
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3rd Order Polynomial
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9th Order Polynomial
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Over-fitting

Root-Mean-Square (RMS) Error: ERMS =
√

2E (w?) /N

The division by N allows us to compare different sizes of data sets on an
equal footing, and the square root ensures that ERMS is measured on the
same scale (and in the same units) as the target variable t.
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Polynomial Coefficients

M = 0 M = 1 M = 3 M = 9

w?
0 0.19 0.82 0.31 0.35

w?
1 -1.27 7.99 232.37

w?
2 -25.43 -5321.83

w?
3 17.37 48568.31

w?
4 -231639.30

w?
5 640042.26

w?
6 -1061800.52

w?
7 1042400.18

w?
8 -557682.99

w?
9 125201.43
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Data Set Size: N = 15

9th Order Polynomial
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Data Set Size: N = 100

9th Order Polynomial
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Regularization

Penalize large coefficient values

Ẽ (w) =
1

2

N∑
n=1

{y (xn,w)− tn}2 +
λ

2
‖w‖2
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Regularization: lnλ = −18
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Regularization: lnλ = 0
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Regularization: ERMS vs. lnλ
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Polynomial Coefficients

lnλ = −∞ lnλ = −18 lnλ = 0

w?
0 0.35 0.35 0.13

w?
1 232.37 4.74 -0.05

w?
2 -5321.83 -0.77 -0.06

w?
3 48568.31 -31.97 -0.05

w?
4 -231639.30 -3.89 -0.03

w?
5 640042.26 55.28 -0.02

w?
6 -1061800.52 41.32 -0.01

w?
7 1042400.18 -45.95 -0.00

w?
8 -557682.99 -91.53 0.00

w?
9 125201.43 72.68 0.01
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Probability Theory

Apples and Oranges
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Probability Theory

Joint Probability:

p (X = xi ,Y = yj) =
nij
N

Marginal Probability:

p (X = xi ) =
ci
N

Conditional Probability:

p (Y = yj | X = xi ) =
nij
ci

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Nov 2024 22 / 58



Probability Theory

Sum Rule:

p (X = xi ) = ci
N = 1

N

∑L
j=1 nij

=
∑L

j=1 p (X = xi ,Y = yj)

Product Rule:

p (X = xi ,Y = yj) =
nij
N

=
nij
ci
· ci
N

= p (Y = yj | X = xi ) p (X = xi )

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Nov 2024 23 / 58



The Rules of Probability

Sum Rule

p(X ) =
∑
Y

p(X ,Y )

Product Rule

p(X ,Y ) = p(Y | X )p(X )
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Bayes’ Theorem

p(Y | X ) =
p(X | Y )p(Y )

p(X )

p(X ) =
∑
Y

p(X | Y )p(Y )

posterior ∝ likelihood × prior
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Probability Densities
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Probability Densities

Probability density: p(x ∈ (a, b)) =
∫ b
a p(x)dx .

p(x) satisfies two conditions: p(x) ≥ 0,
∫∞
−∞ p(x)dx = 1.

Cumulative distribution function: P(z) =
∫ z
−∞ p(x)dx .
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Expectations

Discrete Expectation: E[f ] =
∑

x p(x)f (x)

Continuous Expectation: E[f ] =
∫
p(x)f (x)dx

Approximate Expectation: E[f ] ' 1
N

∑N
n=1 f (xn)

Conditional Expectation: Ex [f | y ] =
∑

p(x | y)f (x)

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Nov 2024 28 / 58



Variances and Covariances

Variance of f : var[f ] = E
[
(f (x)− E[f (x)])2

]
var[f ] = E

[
f (x)2

]
− E[f (x)]2

In particular, we can consider the variance of the variable x itself,
which is given by var[x ] = E

[
x2
]
− E[x ]2

Covariance of x and y : cov[x , y ] = E[{x − E[x ]}{y − E[y ]}]

cov[x , y ] = E[xy ]− E[x ]E[y ]
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Exercises

Use the definition var[x ] = E
[
(x − E[x ])2

]
to show that var[x ]

satisfies var[x ] = E
[
x2
]
− E[x ]2.

Show that if two variables x and y are independent, then their
covariance is zero.

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Nov 2024 30 / 58



The Gaussian Distribution

N
(
x | µ, σ2

)
= 1

(2πσ2)1/2
exp

{
− 1

2σ2 (x − µ)2
}

N
(
x | µ, σ2

)
> 0,

∫∞
−∞N

(
x | µ, σ2

)
dx = 1

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Nov 2024 31 / 58



Gaussian Mean and Variance

Mean: E[x ] =
∫∞
−∞N

(
x | µ, σ2

)
x dx = µ

Second order moment: E
[
x2
]

=
∫∞
−∞N

(
x | µ, σ2

)
x2 dx = µ2 + σ2

Variance: var[x ] = E
[
x2
]
− E[x ]2 = σ2

For a D-dimensional vector:

N (x | µ,Σ) =
1

(2π)D/2
1

|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Nov 2024 32 / 58



Exercises

For a given univariate Gaussian distribution, show that E[x ] = µ and
var[x ] = σ2.

For a given univariate Gaussian distribution, show that the maximum
of the Gaussian distribution is obtained when x = µ.
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Model Selection

Which is the optimal order of the polynomial that gives the best
generalization?

Train a range of models and test them on an independent validation
set.

Cross-validation: use a subset for training and the whole set for
assessing the performance.

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Nov 2024 35 / 58



Model Selection

Cross-Validation
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Curse of Dimensionality

Scatter plot of the oil flow data for input variables x6 and x7. Our goal is
to classify the new test point denoted by ’×’.
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Curse of Dimensionality

The input space is divided into cells and any new test point is assigned to
the class that has a majority number of representatives in the same cell as
the test point.
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Curse of Dimensionality
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Curse of Dimensionality

Consider a sphere of radius r = 1 in a space of D dimensions, and ask
what is the fraction of the volume of the sphere that lies between
radius r = 1− ε and r = 1.

We can evaluate this fraction by noting that the volume of a sphere
of radius r in D dimensions must scale as rD , and so we write

VD(r) = KDr
D ,

where the constant KD depends only on D.

Thus the required fraction is given by

VD(1)− VD(1− ε)
VD(1)

= 1− (1− ε)D .
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Curse of Dimensionality

Plot of the fraction of the volume of a sphere lying in the range r = 1− ε
to r = 1 for various values of the dimensionality D.
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Possible Solutions

First, real data will often be confined to a region of the space having
lower effective dimensionality, and in particular the directions over
which important variations in the target variables occur may be so
confined.

Second, real data will typically exhibit some smoothness properties
(at least locally) so that for the most part small changes in the input
variables will produce small changes in the target variables, and so we
can exploit local interpolation-like techniques to allow us to make
predictions of the target variables for new values of the input variables.
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Example: Medical Diagnosis Problem

Consider, for example, a medical diagnosis problem in which we have
taken an X-ray image of a patient, and we wish to determine whether
the patient has cancer or not.

In this case, the input vector x is the set of pixel intensities in the
image, and output variable t will represent the presence of cancer,
which we denote by the class C1, or the absence of cancer, which we
denote by the class C2.

We might, for instance, choose t to be a binary variable such that
t = 0 corresponds to class C1 and t = 1 corresponds to class C2.
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Example: Medical Diagnosis Problem

When we obtain the X-ray image x for a new patient, our goal is to
decide which of the two classes to assign to the image.

We are interested in the probabilities of the two classes given the
image, which are given by p(Ck |x).

Using Bayes’ theorem, these probabilities can be expressed in

p (Ck | x) =
p (x | Ck) p (Ck)

p(x)

Note that any of the quantities appearing in Bayes’ theorem can be
obtained from the joint distribution p(x, Ck) by either marginalizing or
conditioning with respect to the appropriate variables.
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Example: Medical Diagnosis Problem

p (Ck | x) =
p (x | Ck) p (Ck)

p(x)

We can now interpret p(Ck) as the prior probability for the class Ck ,
and p(Ck | x) as the corresponding posterior probability.

Thus p(C1) represents the probability that a person has cancer, before
we take the X-ray measurement. Similarly, p(Ck | x) is the
corresponding probability, revised using Bayes’ theorem in light of the
information contained in the X-ray.

If our aim is to minimize the chance of assigning x to the wrong class,
then intuitively we would choose the class having the higher posterior
probability.
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Minimum Misclassification Rate

Suppose that our goal is simply to make as few misclassifications as
possible. We need a rule that assigns each value of x to one of the
available classes.

Such a rule will divide the input space into regions Rk called decision
regions, one for each class, such that all points in Rk are assigned to
class Ck .

The boundaries between decision regions are called decision
boundaries or decision surfaces.
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Minimum Misclassification Rate

p(mistake) = p (x ∈ R1, C2) + p (x ∈ R2, C1)

=

∫
R1

p (x, C2) dx +

∫
R2

p (x, C1) dx
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Loss-sensitive Decision

Example: classify medical images as ’cancer’ or ’normal’
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Loss-sensitive Decision

Cost/Loss of a decision: Lkj = predict Cj while truth is Ck .

Loss-sensitive decision ⇒ minimize the expected loss:

E[L] =
∑
j

∫
Rj

(∑
k

Lkjp (x, Ck)

)
dx.

Solution: for each x, choose the class Cj that minimizes:∑
k

Lkjp (x, Ck) ∝
∑
k

Lkjp (Ck | x)

⇒ straightforward when we know p (Ck | x)

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Nov 2024 51 / 58



Loss-sensitive Decision

Typical example = medical diagnosis:
Ck = {1, 2} ⇔ {cancer, normal}

L =

 0 1000

1 0

⇒ strong cost of ”missing” a diseased person

Expected loss:

E[L] =

∫
R2

L1,2p (x, C1) dx +

∫
R1

L2,1p (x, C2) dx

=

∫
R2

1000p (x, C1)dx +

∫
R1

p (x, C2)dx

Note: minimizing the probability of misclassification:

p(mistake) = p (x ∈ R1, C2) + p (x ∈ R2, C1)

=

∫
R1

p (x, C2) dx +

∫
R2

p (x, C1)dx

Jiankun WANG (SUSTech) Robotic Perception and Intelligence Nov 2024 52 / 58



Reject Option
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Inference and Decision

Inference step: we use training data to learn a model for p(C | x).

Decision step: we use these posterior probabilities to make optimal
class assignments.

An alternative possibility would be to solve both problems together
and simply learn a function that maps inputs x directly into decisions.
Such a function is called a discriminant function.
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Approaches to Decision Problems

Rely on a probabilistic model, with 2 flavours:

Generative: (1) use a generative model to infer p (x | Ck), (2) combine
with priors p (Ck) to get p (x ,Ck) and eventually p (Ck | x)
Discriminative: infer directly p (Ck | x)

Learn a discriminant function f (x): (1) directly map input to class
labels, (2) for binary classification, f (x) is typically defined as the sign
(+1/− 1) of an auxiliary function
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Approaches to Decision Problems

Pros and Cons:

Probabilistic generative models:

pros: access to p(x)→ easy detection of outliers, i.e., low-confidence
predictions
cons: estimating the joint probability p (x ,Ck) can be computational
and data demanding

Probabilistic discrimative models:

pros: less demanding than the generative approach

Discriminant functions:

pros: a single learning problem (vs inference + decision)
cons: no access to p (Ck | x)
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Why Separate Inference and Decision?

Minimizing risk (loss matrix may change over time)

Reject option

Unbalanced class priors

Combining models
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